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Chapter 1

Summary Of Results

We have formulated a state variable constitutive model for large deformation, isotropic

thermo-elasto-viscoplasticity. The viscoplastic material parameters appearing in the con-

stitutive functions are determined from experimental data obtained from hot, isothermal,

strain rate jump, load-unload-hold-reload, and constant true strain rate experiments con-

ducted on an Fe-2% Si alloy. The constitutive model is briefly described below. The

details of our work our reported in the chapters to follow.

Constitutive Model

The state variables are taken to be {T,Os}, where T is the Cauchy stress, 0 is the

absolute temperature, and s is a scalar internal variable with dimensions of stress, called

the isotropic deformation resistance. The internal variable s represents an aveiaged

isotropic resistance to macroscopic plastic flow offered by the underlying "isotropic"

strengthening mechanisms such as dislocation density, subgrain size, grain size, solid

solution strengthening effects, etc.

The evolution equations for the three state variables are:

9 Evolution equation for the stress:

C[D - D P] - 116,



where T = T - WT + TW is the Jauinann derivative of Cauchy stress T;

C = 2p.X + {'c - (2/3)tL}1 0 1 is the fourth order isotropic elasticity tensor; jt =

P(), n = k(O) are the elastic shear and bulk moduli, respectively; II = (3tca)l is

the stress-temperature tensor; a = 6(0) is the coefficient of thermal expansion; D

is the stretching tensor; W is the spin tensor; I is the fourth order identity tensor;

and 1 the second order identity tensor.

The plastic stretching tensor DP is given by the flow rule:

S32 'P (T'/&) , with - (i ,o

where T' denotes the stress deviator, and 6(3/2)T' •T' denotes the equivalent

tensile stress.

* Evolution equation for s:

This is taken to be given by

=h(&, 0, s) C - '(0, s),

where h is a hardening function which accounts for any dynamic recovery, and i is

a static recovery function in the absence of stress.

e Evolution equation for 0:

From an approximate balance of energy

0 (pc) - ' {div (Agrad0)+wT. DP},

where p is the mass density, c = (0) is the specific heat, A = A(0) is the thermal

conductivity, and w, a scalar in the iange 0.85 < w < 1, is the fraction of plastic

work converted to heat.
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Based on our hot compression experiments on an Fe-2%Si alloy (performed in the

homologous temperature range 0.6 to 0.9 and the strain rate range 10- to 100 sec-1),

we have proposed the following specific constitutive functions for EP and . :

C A exp (--2) [sinh

Our experiments show that for at least the Fe-2%Si, the static recovery function has

negligible contribution to the evolution of s, and that h may be adequately represented

by
S ho1I - sign° (1 - "

with
.P

s = A, exp (Q)

The list of material parameters in these constitutive equations are: A, Q, m,, ho,

a, , and n. Also R is the universal gas constant. We have formulated a systematic

procedure to determine these material parameters from data obtained from isothermal,

strain rate jump, and constant true strain rate experiments. These material parameters

are listed below.



TABLE 1

Material Parameters for Fe - 2% Si

Material Parameter Value

A 6.346 x 1011 cec - 1

Q 312.35 kJ/mole
3.25

m 0.1956
.S 125.1 MPa
n 0.06869
ho 3093.1 MPa
a 1.5

The correlation between the model and the experimental data, upon which the model

is based and from which the material parameters of the model have been determined,

is very good. Also, we have also performed a variety of experiments that were not used

to determine the material parameters in our constitutive functions. These experiments

were performed to test the predictive capability of the constitutive model. We find that

our constitutive model accurately predicts the response of the material to these critical

experiments.

It is expected that specific forms of constitutive equations should be the same for dif-

ferent materials, as long as the underlying operative physical mechanisms are the same.

Since the mechanisms are generally the same for a given class of materials in a given range

of temperatures and strain rates, we anticipate that the constitutive equations proposed

above should be applicable for modeling the deformation behavior of other cubic metals

at temperatures greater than half the melting tempeiature in degreeb absolute, duld in

the strain rate range 10- 3 to 100sec - '. This range of strain rates and temper-tures is

of great practical interest for numerous low-rate hot working processes (e.g., isothermal

4



forging). Finally, although the use of a sing!e scalar internal variable limits the con-

stitutive equations to describing the deformation behavior of initially isotropic meta.s

upto deformation levels .-here significant polycrystal texturing has not developed, the

constitutive equations developed during the course of our research should be useful for

obtaining improved analyses of various hot deformation processing operations of metals.
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Chapter 2

Introduction

Hot working refers to a collection of metal forming processes which take advantage of the

lower flow stress and greater ductility of metals at high temperatures. It encompasses

such operations as hot rolling, extrusion, and forging, where metals are heated to a laige

fraction of their mAting temperatures and then subjected to large deformations. Hot

working is a common operation in the processing of metals. It has been estimated that

well over 80 percent of all metallic products undergo some form of hot working during

their fabrication history [Semiatin et al. 1981].

The benefits of hot working are extensive. Large changes in shape may be achieved

with each processing step. The machine loads required to achieve these changes arc

much lower than would be encountered at room temperature. There can be substan-

tial savings in mateiial, with properly designed processes producing little waste metal.

There is also the opportunity to control material properties during the working operation.

Many hot working processes produce beneficial distributions of oriented grains and in-

troduce deformation-induced microstruc~ures which increase the subsequent deformation

and fracture resistance of the material.

There are several features common to most hot working processes. Most hot work-

ing produces large deformations, with equivalent strains easily exceeding 1 or 2. Most

processes, to achieve lower working loads, heat the worked metal to temperatures from
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one-half to nine-tenths its melting (homologous) temperature. Strain rates are similarly

high, ranging from 10-2 per second for isothermal forgings to 10' or more per second

in finish rolling and high speed hammer operations. Many working processes are in-

terrupted, incorporating multiple deformation passes on the same workpiece with hold

periods between passes. Temperatures may vary dramatically, as a function of both time

and position within the workpiece. Temperature changes may occur due to both heat

losses to tooling and the atmosphere and the conversion of plastic work into heat. Finally,

the mode of deformation may be extremely inhomogeneous, with very complex material

flow paths involving large rotations, strains, and changes in strain rate.

Partially due to the conservatism of the industry and partially due to the complex-

ity of the hot working process, much of the knowledge for the design of hot working

processes has been both experiential and proprietary. The modelling of such processes

requires the solution of very complex, strongly coupled mechanical and thermal boundary

value problems. The advent of digital modelling techniques such as the finite element

method is beginning to permit the simulation of working operations which before were

frequently designed on a trial-and-error basis. The problems associated with such simula-

tions, however, are far from resolved. Several difficulties remain, many which encompass

experimental, theoretical, and computational disciplines. These difficulties include the

proper accomodation of kinematics of large deformation, the complexit3 of material be-

havior possible in hot working, coupled thermo-mechanical deformation, the complex

friction and thermal boundary conditions, and element distortion and remeshing.

This investigation concentrates on the central issue of appropriate large deformation

constitutive equations for the high temperature deformation of metals. Currently used

constitutive models (e.g. in the F.E.M. program ALPID) are usually simple three dimen-

sional generalizations of uniaxial stress versus strain rate relationships of the power laI%

form where the strcsses and strain rates are those obtained as "steady state" values after
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any transients have decayed [Thomsen, et. al. 1965; Jonas, 1969, Sellars 1972, 1978]. Al-

though these models consider only steady state behavior, conditions described above for

hot working are inherently non-steady. The interrupted, inhomogeneous deformations

resulting from hot working may prevent the numerous operative physical mechanisms

and thermally activated processes from ever reaching a steady state. The final state of a

hot worked piece of metal therefore is strongly affected by its deformation history. This

history dependence suggests a constitutive model of the internal variable type, where the

current state or condition of the microstructure is tracked via a list of variables which

evolve with the deformation and temperature history. These internal variables are not

necessarily directly measureable, but they are intended to represent some averaged ma-

terial property, such as a generalized resistance to plastic deformation. At any point,

the internal variables are assumed to represent the condition of the metal; therc is no

need to know the prior thermo-mechanical history. A second list of variables is added

to the list of internal variables to complete the constitutive model. These imposed or

"external" variables such as strain rate, stress, and temperature are assumed, with the

internal variables, to be sufficient to represent the current mechanical response of the

material and to govern the evolution of both the external and internal variables.

Several investigators have recently proposed internal variable constitutive models for

the high temperature deformation of metals [Hart, 1970; Bodner and Partom, 1975;

Miller, 1976; Kocks, 1976; and Anand 1982]. Virtually all models except that of Anand

have been proposed for application in the creep deformation regime, at temperatures

and strain rates lower than that encountered in hot working. The issues associated with

formulating an internal variable model in either regime are the same. However, due to lack

of experimental data in the hot working regime, it is not evidcnt that a model formulated

for creep may be extrapolated for hot working simulation. The model proposed by Anand

for hot working was based on a reduced set of moderate strain, material tests representing
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a small subset of the hotworking regime. Anand by necessity assumed functional forms

for his material model which he then fit to the experimental data. No data were available

fo- model validation independent of that used for the fitting of model parameters.

The goals of the research reported here were to:

1. Develop a high temperature mechanical test system to characterize metal behavior

in the hot working regime, including high homologous temperatures, moderate

strain rates, and large strains.

2. Perform experiments necessary to investigate the constitutive response of a repre-

sentative metal in the hot working regime.

3. Formulate an internal variable constitutive model from the experimental data, with

the following considerations:

a. The model should represent large, three dimensional deformations in the hot

working regime.

b. The model should be able to represent the most significant aspects of the under-

lying microstructural state of the metal and its evolution during deformation.

Physical phenomena to be modelled include strain hardening, strain rate and

temperature sensitivity including history effects, and both dynamic and static

recovery processes.

c. Material parameter determination should be straightforward and require a min-

imum of experimental testing. This should of course be commensurate with

the degree of complexity that is to be modelled.

d. Finally, the model should be formulated with due consideration of issues regard-

ing its numerical implementation in finite element programs.
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4. Evaluate the model through appropriate validation experiments, including an in-

vestigation of the model's ability to predict some aspects of the internal state of

the material.

The following chapter describes a high temperature test system and describes the

compression testing procedures associated with an iron - 2% silicon alloy. Chapter 4

discusses the structure of the constitutive model, describes a set of experiments used to

evaluate the material functions, and proposes specific forms for those functions. Chapter

5 discusses the reduction of the data obtained from the mechanical tests and presents

a procedure for determining material constants for the constitutive model. Chapter 6

presents a comparison of material -response predicted by the constitutive model with ex-

periments involving boundary conditions not used for the material parameter evaluation.

This chapter also discusses means of correlating predicted values of the internal variable

with physically measureable quantities. Finally, we -conclude this report with some -final

remarks and discussion in Chapter 7.
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Chapter 3

Experimental Apparatus

This chapter begins with a description of the high temperature test system designed

and used to evaluate material response under hot working conditions. Issues -related to

compression testing are discussed, and the model material used in this investigation, an

iron - 2% silicon alloy, is described.

3.1 High Temperature Test System

Any system used for basic high temperature mechanical testing and for the simulation

of hot working should possess the following minimal characteristics:

1. Isothermal testing to temperatures exceeding .9 0, of the material of interest, where

0m is the melting temperature in degrees absolute.

2. True strain rates ranging from 10- 4 to at least 100 sec -1 and preferably greater.

3. Variable testing modes, including compression, torsion, and tension.

4. Rapid quenching of specimens from test temperatures.

5. Complex loading histories, both to evaluate material response and to simulate non-

steady forging operations.
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6. Controllable environments to reduce the effect of oxidation.

7. High speed data collection.

Figure 3.1 shows a photograph of the test system constructed to meet the above

characteristics. The basic system consists of an Instron Corporation, Model 1322 ten-

sion/torsion servohydraulic test machine. The system actuator has a frequency response

of approximately 10 hertz, which effectively limits the maximum controllable strain rate

for ordinary, laboratory sized axial specimens to approximately 1 per second. The lower

strain rate limit is approximately 10- per second due to the limits of resolution for the

actuator displacement and hydraulic servovalve. Approximately the same strain rates

are obtainable in torsion.

The analog controllers for the servohydraulic machine permit external control signals

in the form of voltages. These may be provided either by digital or analog function

generators, permitting arbitrarily complex loading histories. Most of the control signals

for this investigation were obtained from an analog function generator, designed and

assembled by Mehrdad Haghi (of our laboratory), following a simpler design used by

Immarigeon and Jonas [Immarigeon and Jonas 1975]. The function generator uses a

simple RC circuit to provide a decaying exponential voltage which simulates a constant

true strain rate compression test. The function generator is also designed with set points

which may either hold the voltage at that point or change the strain rate, which enables

strain rate jump and recovery tests.

The temperature and environmental control for the test system is provided by a high

temperature, vacuum furnace built by Centorr Associates, Suncook, New Hampshire,

according to our specifications. The furnace, pictured in Figures 3.2 through 3.4 is a

stainless steel, double-walled chamber with a center heat zone. The furnace is mounted

in the frame of the servohydraulic machine, as illustrated in Figure 3.1. The vacuum

12



system consists of a roughing pump and a 4 inch diffusion pump which is attached to

the back plate of the furnace. Maximum vacuum attainable was approximately 10-6

torr. The furnace is equipped with flexible bellows above and below through which pass

loading rods composed of a high temperature molybdenum alloy, TZM. The loading rods

pass into the furnace through the bellows and are hermetically sealed with a pair of

differentially pumped Viton quad rings. The lower seal is designed to permit the lower

loading rod to both rotate and move in and out of the furnace without disturbing the

vacuum.

Heating is provided by a cylindrical heating zone consisting of tungsten mesh heat-

ing elements surrounded by a multiple layer set of molybdenum heat shields. Power

is provided by an SCR-controlled A/C power supply which caused extensive problems

with electrical noise. Electrical noise is a continual, unavoidable problem with SCR con-

trollers. In retrospect the system should have been designed with a D/C power supply.

A Leeds and Northrup Electromax V temperature controller is used with chromel-alumel

thermocouples to maintain specimen temperatures. A thermocouple spot welded to each

specimen serves as the feedback transducer to the controller. The heat zone is designed

to reach temperatures up to 1800 Celsius, but the loading rod materials, 94% alumina

and TZM, begin to creep and recrystallize, respectively, at approximately 1200 Celsius.

All tests were therefore run at or below 1200 Celsius. The furnace is water-cooled, water

being circulated between the double walls of the furnace while at temperature.

The furnace was also equipped with an insulated Conflat induction heating feedthrough.

Induction heating in atmosphere or vacuum is therefore another possible means of reach-

ing high temperatures. Tests involving quenching require induction heating since the

tungsten mesh heating elements and molybdenum heat shields can not withstand the

rapid contraction associated with querch cooling. Induction heating possesses the same

disadvantage as the SCR heating system in that it generates a significant amount of

13



electrical noise, obscuring transducer signals.

Other features of the furnace include ports to accomodate gas quenching, 12 ther-

mocouple feedthroughs, and mounting brackets and feedthroughs appropriate for a high

temperature, MTS extensometer.

Data acquisition for most of this project was accomplished with an IBM PC/XT

equipped with a Metrabyte Corporation DASH-16 analog-to-digital converter. The DASH-

16 was provided with BASIC language callable subroutines which permitted sampling

rates exceeding 1 kilohertz. An approximate limit of 30,000 data points could be col-

lected during one sampling session, the maximum number controlled by the memory

remaining after subtracting the memory requirements of the BASIC language and the

BASIC sampling program from a 64K sector of IBM/PC memory. All data was trans-

ferred to a Data- General- MV4000 computer for analysis; the IBM/PC was used only for

data acquisition.

The high temperature system is unique in the variety of high temperature test ca-

pabilities. Other systems exist which permit one mode of testing, heating, or control,

but we know of no other system with the same collected capabilities. All of the data

presented in this report were obtained using this test system.

3.2 Compression Testing

The role of tL - compression test in the study of the large deformation of metals is well es-

tablished [ASTM Standard E209-65; Chait and Papirno, 1983; Hsu, 1969]. Compression

testing achieves large strains due to the absence of necking and permits a fairly simple

means of measuring strain by determining the relative displacement of the compression

platens. Also it is also easier to-perform relative to torsion testing since it requires sim-

pler and more common experimental apparatus and requires less complicated alignment
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of loading fixtures. Compression testing is particularly appropriate for large deformation

testing at high temperatures, where temperature uniformity is difficult to maintain in

tension and torsion specimens, and strain measurement in tension and torsion requires

complex extensometry.

Unlike tension and, to a lesser extent, torsion testing, compression testing frequently

is not selected for material testing due to its propensity for different modes of inhomo-

geneous deformation. Temperature gradients, lateral buckling, and friction between -the

compression specimen and compression platen all may create inhomogeneous deforma-

tion.

When a material demonstrates substantial rate sensitivity, temperature gradients,

specifically axial gradients, may produce conical specimens, illustrated in Figure 3.5.

The gradient in this case was caused by the quenching of the upper end of the specimen

by a cooler compression platen. Extensive finite element heat transfer analyses of 'the

Centorr furnace heat zone and the initially installed TZM alloy loading rods pr 'ided with

the furnace indicated that the greatest source of heat loss was through the water-cooled-

loading rods. The conduction through the rods was enough to r.-oduce temperature

gradients in excess of 20 degrees Celsius along the length of the compression specimens.

This gradient was reduced to ±2 degrees Celsius by installing one inch diameter, 94%

alumina ceramic rods in place of the TZM loading rods. The alumina rods fit within the

mounting sockets of the TZM rods, which were withdrawn from the furnace heat zone.

The change to alumina rods reduced the thermal conductivity of the heat zone loading

rod material from approximately 100 W/m OK to 5 W/m OK. The new loading rod system

is shown in Figure 3.6. TZM was still used as the compression platen material, since it

could be easily polished to provide a smooth compression surface, and since it acted to

distribute the specimen contact load evenly over the alumina rod crossection. It should

be noted that a much easier method to eliminate temperature gradients is to employ
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a three zone furnace. Such a furnace eliminates any sensitivity to load train materials,

permitting the use of high temperature materials, such as thoriated tungsten or graphite

without concern for these materials' high thermal conductivities.

Lateral buckling was encountered in compression specimens whose height to diameter

ratio exceeded 1.5. This height-to-diameter limit appears rather inflexible, for we fre-

quently obtained shear buckling in specimens with a 1.6 ratio. A ratio of 1.5 eliminated

any ostensible buckling.

A more significant deformation inhomogeneity resulted from friction between the

specimen and the compression platens. Figure 3.7 indicates the deformation pattern

which results from excessive friction between the specimen and platens. Figure 3.8 illus-

trates the shape of a comparably barrelled specimen. The effect-of friction in preventing

homogeneous compression was reduced through the use of grooves in the ends of the

compression specimens in conjunction with high temperature lubricants. This technique

has been used by many investigators [Uvria, 1968; Sherby, 1980; Hsu, 1969] and appears

to work very well in producing homogeneous compression for compressive true strains

exceeding -1.0. Shallow, concentric grooves-are machined on the end faces of the spec-

imens to hold high temperature lubricant. Figure 3.9 provides the dimensions of -the

specimen and the grooves on the specimen faces. The specimen dimensions were selected

to provide sufficient grains in the cross-section to permit a continuum assumption, -the

number of grains encountered across the diameter being approximately fifteen.

The lubricants used were mixtures of powdered glass and boron nitride powder. This

particular combination of glass and boron nitride appears to act as a high temperature

analog to the common room temperature lubricants of molybdenum disulfide or graphite

in a grease carrier. At high temperatures the glass melts to form a viscous, lubricating

film which also carries the boron nitride. Boron nitride possesses a hexagonal basal plane

crystalline structure, providing lubrication in the same manner as graphite or molybde-
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num disulfide [Niedenzu, et al. 1965]. The particular glass/boron nitride mixtures used

as lubricants at the different test temperatures are listed in Table 3.1. Our general ex-

perience indicates that a good criterion for lubricant selection is that the melted glass

should have a viscosity of approximately 10 poise at test temperature, and that the

glass-to-boron nitride weight ratio should be greater than 4-to-i, and should probably

be closer to 8 or 10-to-1.

It is also possible to eliminate the boron nitride completely and still obtain uniform

deformation using only glass. Boron nitride extends the effective usable lubrication tem-

perature range of a particular glass. Boron nitride may also react with oxygen at high

temperatures, so its usefulness may be limited to vacuum or inert environments.

Figure 3.10 shows a typical compression specimen before and after an essentially

homogeneous, isothermal, constant true strain rate compression test to a true strain of

-100%. Notice that the deformed specimen is stil cylindrical, and that there is no notice-

able rollover of the sides of the specimen, which would have resulted were there friction

between the specimen end faces and the compression platens. Figure 3.11 shows the

microstructure of one such specimen. Notice that all of tlhe grains possess approximately

the same aspect ratio as the deformed specimen.

Additional factors influenced deformation homogeneity of the compression specimens.

It appears to be very important for the compression platens to be well polished. The TZM

platens used for the experiments described within were polished for each experiment to an

approximately 10 micron surface finish. The ends of the compression specimens were also

finished to a 600 grit roughness. It is also important for the opposing surfaces of the load

train to be parallel and remain so during the test. The end of the compression specimens

should also be parallel. Groove spacing and depth appeared to be less sensitive controlling

parameters than was initially anticipated. Approximate bounds for these dimensions are

a groove spacing of fifteen to thirty thousandths of a inch and a groove depth of four to
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eight thousandths of an inch.

Compressive strains throughout this investigation were measured by subtracting the

effect of test machine compliance from the displacement of the servohydraulic actuator.

The large displacements required for large strain compression tests permitted this indirect

means of measuring deformation, since the errors associated with variations and nonlin-

earities in compliance and the resolution of the actuator LVDT were relatively small. The

errors were more significant, however, at the beginning of each test when the tolerances

were taken up, and when we desired very accurate strain measurements. Extensive digi-

tal smoothing techniques permitted greater resolution in measuring displacements than

was possible using analog data collection equipment. Using smoothing, we could easily

resolve strains less than 10- , although the degree of resolution was sensitive to both

strain rate and rate of data acquisition. More exact resolution of strains would be aided

by some means of measuring the relative displacement of the compression platens, such

as a high temperature LVDT, extensometer, or strain gauge. Implementation of these

transducers is not trivial, although they are necessary for-small strain resolution.

3.3 Iron - 2% Silicon Model Material

An iron silicon alloy was selected as the model material in this investigation for several

reasons. First, although an iron based material, it retains a body-centered cubic structure

up to the solidus temperature. This property is useful, for we wished to be able to

deform our model material at hot working temperatures and then rapidly quench the test

specimens to preserve the hot worked microstructure. The martensitic transformation

associated with many iron alloys would erase any deformation-induced microstructure.

The equilibrium diagram for the iron/silicon system shown in Figure 3.12 indicates the

persistence of the alpha phase at all temperatures for the above composition.
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The iron 2% silicon was also selected for the high stacking fault energy associated

with body-centered cubic materials. Our intention was to model the evolution of struc-

ture including the mechanisms of hardening, dynamic recovery, and static recovery. We

wished to avoid dynamic recrystallization, which can introduce such complications as an

oscillating stress/strain response and deformation localization [Jonas, 1969]. Figure 3.13

illustrates the oscillations which result during the deformation of a material which ex-

hibits dynamic recrystallization, in this case 1018 plain carbon steel. High stacking fault

energy materials generally do not demonstrate dynamic recrystallization since the rate of

recovery is believed to be sufficiently high to prevent the accumulation of a deformation

structure which may trigger recrystallization [McQueen, 1982.

The deformation response of iron silicon alloys has also been studied extensively

using both transmission electron microscopy [e.g. Hu, 1964] and dislocation etch pits

[Lytton, et al., 1965]. We felt that extensive experience in the examination of iron silicon

microstructures would facilitate efforts at similar examinations should we wish to do-so.

The particular alloy used in this investigation was provided by Armco Steel Company,

Middletown, Ohio. It was provided in rolled plates, approximately 1 inch thick, 12-inches

wide, and 3 to 4 feet long. The nominal composition is listed in Table 3.3. All specimens

were machined such that their axis of symmetry was oriented across the width of the

plate, illustrated in Figure 3.14. The material possessed a large grain size. Figure 3.15

illustrates the polished and etched (Fry's reagent) cross-section of a typical compression

specimen.

All specimens were annealed for 1 hour at 700 degrees Celsius. This schedule is

identical to that used by Young and Sherby [Young and Sherby, 1973] in an investigation

of a similar iron silicon alloy. Annealing at higher temperatures and for a longer -time

was avoided to prevent excessive grain growth.
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TABLE 3.1

Lubricant Composition

Temperature Constituents Composition Ratio
(Celsius) by Weight

700 BN:1190:Acetone 1:4:16
800 BN:1190:Acetone 1:4:16
900 BN:0010:Acetone 1:8:32
1000 BN:0010:Acetone 1:8:32
1100 BN:0010:Acetone 1:8:32
1200 BN:0010:Acetone 1:8:32

Notes:

1. BN - boron nitride powder, purchased from Union Carbide Corporation, Grade HCP.

2. Four digit number refer to glass classification codes. Glass was purchased as a powder,

325 screen size, from Corning Corporation, Corning, New York.
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TABLE 3.2

Composition of Iron - 2% Silicon

~ElementWeht

Si 1.98
Al 0.56
C 0.0023

Mn 0.16
Cu 0.26
Cr 0.13
Ni 0.14
S 0.0012
P 0.009
Ti 0.0041
N 0.0050

Mo 0.038
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Figure 3.1 High temperature mechanical test system.

22



Figure 3.2 Vacuum furnace exterior
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Figure 3.3 Vacuum system for high temperature
furnace.
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Figure 3.4 Vacuum furnace interior.
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Figure 3.5 Conical specimen resulting from axial
temperature gradient.
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Figure 3.6 Load train for isothermal compression
testing.
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Figure 3.7 Pattern of grain deformation in
compression specimen with significant friction between

specimen and compression platen.
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Figure 3.8 Barrelled compression specimen resulting
from friction between specimen and compression

platen.
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Figure 3.9 Dimensions of Fe - 2% Si Compression Specimen.
Test results insensitive to groove geometry.
(All dimensions in inches.)
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Figure 3. 10 Compression specimen before and after a
homogeneous, isothermal, constant true strain rate

compression test.
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Figure 3.11 Grain deformation obtained from a
homogeneous, isothermal, constant true strain rate

compression test.
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system.
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Figure 3.13 Isothermal, constant true strain rate compression data
for 1018 carbon steel. Oscillations are due to
recrystallization.
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Figure 3. 14 Orientation of compression specimens
relative to rolled Fe - 2% Si plate.
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Figure 3. 15 Crosssection of compression specimen
etched to indicate grain size.
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Chapter 4

Experimental Determination of the
Material Response Functions

The basic form of the constitutive model follows the mathematical structure proposed by

Anand for an isotropic metal [Anand, 1985]. The model assumes three state variables:

{T, s,O},

where T is the Cauchy stress, 0 is the absolute temperature, and s is a scalar inter-

nal variable which represents an isotropic resistance to plastic deformation. Evolution

equations for the three variables are:

o Evolution equation for the stress:

Tv = C[D - DP] - I ,

where

T V _ T - WT + TW Jaumann derivative of Cauchy stress T;

L 2y17 + {r - (2/3)}® 1 fourth order isotropic elasticity tensor;

1 /0), tK = k(O) shear and bulk moduli;

H (3ao )1 stress-temperature tensor;

C = &(0) coefficient of thermal expansion;
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L grad v spatial gradient of velocity;

D sym (L) stretching tensor;

W =- skew (L) spin tensor;

0 absolute temperature;

2" fourth order identity tensor;

1 second order identity tensor.

The constitutive equation for D P is:

where

6p= f(3, 0, s) > 0, & < s, equivalent plastic tensile strain rate;

T' deviator of the Cauchy stress;

or = V(3/2)T'. T/ equivalent tensile stress.

* Evolution equation for the internal variable s:

s = .(&, 0, s),

e Evolution equation for the absolute temperature:

Given by the following approximate energy balance equation (this is not a consti-

tutive equation):

- (pc)- 1 {div (A gradO) + w T DP},

Here p = p(O) is the mass density, c = Z(O) is the specific heat, A = A,(O) is the

thermal conductivity, and w, a scalar in the range 0.85 < w < 1.0, is the fraction

of plastic work converted to heat.
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The main task of this investigation then is to evaluate the functional forms for the

equivalent plastic strain rate f(&, 0, s) and the evolution equation for the internal variable

s: 0, S).

This constitutive model employs only one scalar internal variable, s, for several rea-

sons. First, we wished to determine whether one scalar internal variable would be suf-

ficient to describe the major features of metal behavior during hot working. The well-

known correlation between the dislocation density and flow stress suggested that a single

internal variable might be adequate. There is a-.ditionally sufficient uncertainty of what

role a second internal variable would play. Some investigators [Kocks, 1966] suggest

that obvious secondary parameters such as dislocation cell size may not contribute to

deformation resistance and are merely consequences of dislocation density.

Second, the task of determining the evolution of internal variables is much more

straightforward if there is only one. We wished to be able to perform tests which would

suggest the functional form for the evolution equation for the internal variable. More

than one internal variable would necessitate tests which would somehow decouple the

evolution of the two or more internal variables. We felt that the extent of knowledge

concerning the development of state during large deformations provides very little guid-

ance for performing such experiments.

The internal variable was selected to be scalar since the task of accomodating the

largest source of anisotropy, deformation-induced texture, is still not well understood.

Small strain anisotropy associated with Bauschinger type effects were ignored since its

effect was assumed to saturate at a small fraction of the strains encountered in hot

working.
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Here, we focus our attention on the two undetermined response functions of the

constitutive model, the rate or flow equation:

C= f(&,S,), 4.1

and the evolution equation:

. = g(&,s,O). 4.2

Given the above structure, we now must deduce the functional forms of the two equa-

tions. Ideally, we would like to have an adequate understanding of the underlying mecha-

nisms governing high temperature behavior such that our task would be only to perform

the experiments to determine the few specific material constants for the metal of in-

terest. Realistically, our limited knowledge of these mechanisms precludes this, both

because our understanding of the different mechanisms is incomplete and because the

actual mechanisms are associated with complex structures and processes certainly not

totally representable by a single internal variable model. We therefore choose to moti-

vate functional forms, where possible, from elementary assumptions about deformation

mechanisms, guided by appropriate experimentation to modify these forms and provide

material parameters.

We make the following assumptions concerning the forms of equations 4.1 and 4.2:

1. We define the scalar internal variable s to be a stress valued quantity called the de-

formation resistance. As a structure parameter, it represents a generalized isotropic

resistance to plastic flow which contains contributions from dislocation density, sub-

grain size, grain size, solid solution strengthening, intrinsic lattice resistance, etc.

For pure, single phase materials, we expect it to be highly correlated with the

dislocation density and subgrain size, which are expected to be the primary contri-

butions to deformation resistance at these temperatures.
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2. The state variable enters into the rate equation only as a ratio with the equivalent

tensile stress. That is,

P= f(,iO) 4.3

This form has been suggested by Kocks, Argon, and Ashby [1975] in conjunction

with a model for mechanically-activated dislocation glide. Rice [1970] and others

have suggested this structure as well, although there seems to be no fundamental

requirement for a scalar internal variable to be incorporated in this way. We shall

consider functional forms for which equation 4.3 may be inverted such that we

may write a = cs, where c is a function of strain rate and temperature. This

structure parallels an expanding or shrinking isotropic yield surface, where the

plastic resistance acts as the flow strength. Of course, the model presented here

does not include a yield surface; plastic deformation is assumed to occur at any

non-zero value of equivalent stress.

3. The evolution equation for the internal variable is assumed to be of the form:

= h(&, s,O)6 - (s,O). 4.4

Assuming three primary mechanisms, hardening, dynamic recovery, and static re-

covery, we associate h(&, s, 0) with dynamic processes, i.e., hardening and dynamic

recovery. Static recovery is accommodated through i(s, 0). This form is reminis-

cent of the Bailey-Orowan equation [Bailey, 1926, Orowan, 1945], and is almost

universally employed in internal variable evolution equations for high temperature

deformation. The assumption that the static recovery function is independent of

stress reflects our desire for this function to represent evolution processes which

occur in unloaded material.

Given the above assumptions about the forms of the rate and evolution equations,

we now ask what experiments may be performed to complete their specification. Given
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that the two differential equations 4.3 and 4.4 are coupled, it seems reasonable that we

should seek some way of decoupling the two equations so that the functional forms may

be investigated separately. Given two equations of the form 4.3 and 4.4, then following

a similar development presented by Ruina [1983], we may make the statements:

* The value of the internal variable is uniquely determined if all of the external

variables (&, 0, 2 ) are known. This is portrayed in Figure 4.1 where dotted lines of

constant internal variable s are indicated in stress/strain rate/temperature space.

The lines are straight only for illustration, there is no physical reason why they

should be straight. The dashed line exists for those materials which reach some

saturation condition where the value of the internal variable attains some constant

value, here denoted as s*.

9 Experiments where we apply fast changes in the external variables (so that we

may assume constant structure) should produce the relationship between them

expressed by equation 4.3. If we are confident that the structure has not changed

in the time necessary to apply the change, then the changes in the external variables

are governed only by the rate equation. This then suggests a series of experiments

where we rapidly change either the strain rate, temperature, or stress to different

values, with the values of the other external variables being the same just before the

change. This guarantees that the initial state is unchanged, and the rate equation

is decoupled from the evolution equation.

Using the assumptions listed above and exploiting the characteristics of the functional

forms outlined, the following sections propose a series of tests for evaluating the consti-

tutive functions. At least three modes of testing are required to evaluate the functional

form of both the rate equation and evolution equation for the internal variable. The

following sections detail the three series of tests used in this investigation: (a) isothermal
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strain rate jump tests from the same state to evaluate g in 4.3, (b) isothermal load-

unload-hold-reload tests to evaluate t in 4.4, and (c) isothermal, constant true strain

rate tests to evaluate h in 4.4.
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4.1 Evaluation of the Rate Equation: f(2, 0)

As just argued, if one wishes to experimentally probe the behavior of the rate equation

expressed by 4.3, one must design experiments such that material state is held constant.

One can not otherwise separate the effect of an evolving structure from the instantaneous

response at constant structure. Very few experiments have been performed, particularly

within the hot working regime, which have accomplished this separation. This is probably

due to the fact that internal variable models have not been applied to hot working;

experimentalists therefore have not designed their investigations with an internal variable

formulation in mind. It is striking, however, that there are not more constant structure

data a -ociated with the creep regime, for internal variables have been applied to creep

constitutive models for many years.

Investigators have used different experimental techniques to characterize the rate de-

pendent deformation of metals at assumed constant internal state. Most techniques

involve an abrupt change in either strain rate or stress and measurement of the instan-

taneous or "short time" response in the associated stress or strain rate. None of the

techniques, whether stress-drop, relaxation, or jump tests, is without experimental un-

certainties. These uncertainties range from difficulty in extracting the effect due to a

particular mechanism when many possible mechanisms may be operating, to operational

problems associated with test machine compliance, resolution of small strains, acquisition

of data from rapid transients, and computational uncertainties in determining rate mea-

sures from data obtained as a function of time. As a result no one technique is universally

accepted, and the type of test performed by an investigator is generally a function of the

type of test equipment which is available instead of the most desirable test technique.

All of the tests mentioned herein assume that internal state does not change significantly

during the period of the transient, an assumption which is only approximately satisfied
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in all tests.

The following paragraphs describe briefly the different tests used to correlate stress

and strain rate at constant structure, list some of the investigators associated with each

test type, and also give some of the uncertainties associated with each type. The sec-

tion finally presents some arguments proposing that the strain rate jump test may have

some clear advantages over stress-drop and relaxation tests in determining isostructural

properties.

Mitra and McLean [1967] used stress-drop tests to evalute the stress dependence of the

creep strain rate in aluminum and nickel by correlating the strain rate resulting after the

stress drop with the magnitude of the stress after the drop. Mitra and McLean assumed

an initial incubation period after which they measured the strain rate. Assuming that

the state of the material has not changed significantly during the incubation period, the

resulting stress/strain rate curve may be taken to be the stress dependence for the given

initial internal state. Investigators have used the same procedure but have measured the

"instantaneous creep rate" at the new stress without any assumed incubation period, e.g.

Sherby [1957] and Robinson [1969,74,75], summarized by Takeuchi and Argon [1976] and

Sherby [1977]. The above mentioned incubation period is problematic in the interpre-

tation of stress drop data. The incubation period is assumed necessary to let anelastic

effects subside, but there is no clear, and certainly no consensus, criterion on what that

period should be. Frequently investigators do not indicate what delay, if any, they have

employed before determining the post-stress-drop, strain rate. Complicating the uncer-

tainty about incubation is the obvious possibility of structure evolution occurring during

the incubation period, thereby voiding the constant structure assumption of the test.

Of the investigators who have used stress drop tests to evaluate rate dependence,

most of the results mentioned in the papers listed above indicate a constant structure

power law stress dependence of the strain rate of 6 to 8. Figures 4.2a and 4.2b illustrate
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the power law dependence of constant structure, stress drop data. This dependence in all

cases was greater than the steady state stress exponent obtained for each material. The

power law strain rate/stress relationship for constant structure has not been universally

confirmed. Gibeling and Nix [1982], recently performed a set of stress drop tests on pure

aluminum and found that the isostructural stress dependence of the strain rate followed

an exponential relationship. [Figure 4.2c]

Stress drop tests are difficult to perform for hot working investigations due to the

magnitude of the associated strain rates. Evaluation of strain rates following a change

in stress requires numerical differentiation of a strain versus time record, which in turn

requires sampling of strain over very small time intervals.

Hart [1979] and others have popularized the relaxation test as another test of stress

dependence at constant structure. In this procedure, a specimen is deformed to a given

strain and the test machine is halted. The specimen strain rate may be determined

by subtracting a machine compliance effect from the load versus time curve obtained

during relaxation. Hart estimates that the inelastic strain accumulated during a typical

relaxation test is about 10- . From this Hart states that such a small strain increment

produces negligible strain hardening, so the test can be considered to be at a constant

state. This assumption is valid only as long as static recovery effects can be neglected,

which is certainly not possible in the range of homologous temperatures associated with

hot working. Other investigators using this technique include Alexopoulos [1982] and

C. Li [1981]. The relaxation test is problematic in that some investigators have pro-

posed using it to characterize recovery mechanisms, an application directly contrary to

Hart's assumption of zero state change. Other investigators have suggested that the

small strains associated with relaxation tests do not accurately probe the large strain

constitutive response of a material since little dislocation motion is required to unload

the test specimen [Rhode et al. 1973].
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Another procedure used to measure the constant structure, strain rate or stress de-

pendence is to suddenly change the strain rate. The instantaneous change in stress

accompanying a change in strain rate may be a more faithful representation of the stress

dependence than that which results from the stress drop test, since there is no associated

incubation time. Klepaczko and Duffy [1977, 1982, 1986] have probably performed the

most comprehensive set of strain rate jump tests, having documented the behavior of both

FCC and BCC materials over a wide range of temperatures and strain rates, although

most of their test temperatures were below one half the homologous temperature.

It should be noted that very few of the investigators mentioned above have employed

any of the "jump" tests described above in a manner appropriate to decoupling state

from instantaneous rate dependence. Such decoupling requires jumps from the same

initial state. In the context of the single, isotropic internal variable model under con-

sideration here, this means from the same value of temperature, strain rate, and stress.

Given that the real material may (and probably does) exhibit history dependence beyond

that representable by a single internal variable, the jumps should occur after identical

deformation histories to assure as identical a state as possible. In a case where a steady

state is reached, it is useful to impose the sudden change from steady state conditions

where the jump state is more reliably reproduced. A set of such jump tests is indicated

in Figure 4.3. Figure 4.4 illustrates a set of jump tests on the schematic introduced in

Figure 4.1, where the test begins with the value of the internal variable so and eventually

saturates at s*.

Interpretation of jump test data is complicated by different back-extrapolation meth-

ods used to determine the instantaneous stress dependence, especially when there is an

overshoot and subsequent drop in stress. Kocks, Argon, and Ashby [1975] review the

different methods and conclude provisionally that the method of extrapolation is not of

critical importance. The jump test data obtained in this investigation does not demon-

47



strate any overshoot. The data show a linear segment which then increases monotonically

with increasing strain. One may therefore select a simple and straightforward technique

of defining the instantaneous stress response as that resulting from a 0.2 percent strain

offset, illustrated in a schematic strain rate jump test in Figure 4.9, where ao is used

as the constant structure stress response. This necessarily assumes that one, there is

no change in state during this strain increment, and two, that the transition to the new

strain rate has been accomplished over the small strain increment. The 0.2% strain offset

criteria was chosen over some back extrapolation procedure since the presence of exten-

sive hardening made extrapolation from some point further from the jump point difficult

to justify.

Very few investigators have attempted to examine the constant structure temperature

dependence of the flow behavior of metals within the regime of temperatures and strain

rates associated with creep or hot working. Direct measurement of this dependence,

and thus the activation energies associated with the dislocation glide mechanisms, re-

quires temperature jump tests. The activation energies obtained from steady state data

represent the combined contribution of both glide kinetics and the thermal processes

controlling the evolution of microstructure. We did not perform any temperature jump

testing in this investigation because the time constant associated with changing temper-

atures in the test equipment was significantly larger than the recovery rates associated

with the model material.

4.1.1 Strain Rate Jump Tests

As discussed in the previous section, jump tests measure material response at a given con-

stant structure, thereby characterizing the rate equation associated with our constitutive

model. A series of strain rate jump tests were performed on the test system described in

Chapter 3. All strain rate jumps were programmed to occur at the same value of strain
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for a given temperature, after the stress variation with strain had reached an apparent

constant value at the initial strain rate. Jumping from such apparently steady state

conditions minimized the variation in initial state among tests at the same temperature

and initial strain rate. Figures 4.5 to 4.8 show the strain rate jump test results at 700,

800, 900 and 1000 degrees Celsius. All jumps in strain rate were from the same initial

strain rate of 0.2 x 10- 4 per second. The maximum final strain rate was selected to be

1 per second due to the limit of the servohydraulic dynamic response. This strain rate

also corresponded to the rate at which noticeable adiabatic heating occurred, producing

an effective limit to the isothermal, constant true strain rate test conditions.

The displacement command signal for the strain rate jump tests was provided by

the analog function generator described in Chapter 3. Data acquisition was performed

on a IBM PC/XT equipped with a Metrabyte Dash-16 data acquisition board. Two

programs were used on the PC/XT, both of which are listed and described in Appendix

A . Both the load cell and LVDT output signals were also conditioned by a 60 Hertz

cut-off, low pass filter to reduce the electrical noise generated by the vacuum furnace

heating elements. The filter frequency was selected to permit as much noise reduction as

possible without distorting trancducer output signals.

Once stored on the PC/XT, the load/displacement data were transferred to a Data

General MV4000 where they were converted to true stress/strain data. The stress and

strain values were then independently smoothed, using sample number as the independent

variable, and then the plastic strain and strain rate were calculated at each sample point.

The programs and procedures used for this analysis is described in Appendix A.

The stress before and immediately after the jump was then measured. The stress

after the jump was selected to be the stress corresponding to a 0.002 offset strain from

the jump strain, as illustrated in Figure 4.9. It was frequently difficult to determine this

value precisely due to the absence of a clearly linear, elastic, initial portion of the jump
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in stress. The initial portion of' the curve, although linear, decreased in slope between

tests as the final strain rate was increased. In any event, the linear section of the curve

was assumed to be elastic, and the offset was taken from this section. The uncertainty in

this linear region did not significantly change the value of this offset stress. Examination

of the strain rate data indicated that the final strain rate was achieved at approximately

the same time as the 0.002 strain offset stress was reached. Given the assumption of

no change in state up to that point, the offset stress could then be assumed to indicate

the stress sensitivity of the material at a given internal state. Figure 4.10 shows the

constant state lines constructed from this stress/strain rate data. Table 4.1 lists the data

associated with these tests which were used to produce Figure 4.10.

Three rate equations were considered for correlation with the constant structure data.

One, a simple model representing a stress and structure dependent thermal activation:

Z4.1.1

Here, A and Q are material parameters. Two, a modification of 4.1.1 to reflect the

phenomena of power law breakdown:

Z= A (0) exp[ (1- )], 4.1.2

where an additional parameter q has been added. Three, an alternative to 4.1.1 which

separates temperature and stress dependence into a simple Arrhenius term involving

a constant activation energy and a function depending only on stress and the internal

variable:

= A exp (-Q) [sinh (t)]. 4.1.3

Four material parameters are required: A, Q, 6, and m. R is the gas constant in these

equations (8.314 x 10- kJoules/mole). Equation 4.1.1 reflects a simplification of a form

proposed by Kocks, Argon, and Ashby [1975] for the jerky glide of dislocations. Here,
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s represents a generalized obstacle resistance to dislocation motion. Equation 4.1.2,

proposed by Lee and Zaverl [1978], follows the same motivation, but assumes a priori that

the rate equation should reflect the transition from power law to exponential behavior,

and therefore includes a stress-dependent pre-exponential to accommodate the power

law. Equation 4.1.3 makes the same a priori assumption but uses a modification of the

following hyperbolic sine form first proposed by Garofalo [1963] to model steady state

behavior into the power law breakdown regime:

ss = A. exp [sinh(aco,)]1/m, 4.1.4

where the "ss" subscript denotes quantities relevant only to steady state conditions. This

form accomodates power law breakdown since for low values of (ao',,) it approximates:

= ~ R A'xp(ss 8 )/m, 4.1.5

and for large values of the same argument it approaches:

CSS- 21/rn exp - ) exp ( s) . 4.1.6

There appears to be no widely accepted mechanistic derivation of the hyperbolic sine

form of the rate equation represent by 4.1.4. Gittus [1976] has proposed an explanation

of power law breakdown founded on the dominance of forward and backward vacancy

formation rates. A hyperbolic sine form results naturally from this assumption of forward

and backward mechanical activation. Many other investigators, [Sherby, 1968; Frost and

Ashby, 1982] associate power law breakdown with a transition from climb-dominated

deformation to dislocation glide domination. In any event, it is well-known that the

hyperbolic sine form provides a convenient phenomenological representation of power

law breakdown.

We settled upon the hyperbolic sine form, 4.1.3, for the rate equation for the following

reasons:
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1. The steady state stress/strain rate relationship for pure aluminum and Fe - 2%

Si suggests a constant activation energy. Figure 4.11 illustrates the steady state

stress/strain rate relationship for aluminum over a wide range of strain rates and

temperatures, where the steady state strain rate is normalized by a constant ac-

tivation energy [Jonas, 1969]. In light of the success of this normalization, we

found it reasonable to extend this relationship to the rate equation and assume a

relationship of the form of 4.1.4.

The jump test data for the Fe - 2% Si further suggests a functional dependence of

the form of 4.1.3. Figure 4.12 plots the constant structure jump test data where

the strain rate has been normalized by a constant activation energy, taken in this

case to be that for self diffusion in alpha iron. It is obvious that a power law

does not represent the dependence between stress and the normalized strain rate.

With the exception of the 700 degree Celsius data, each constant structure curve

is concave upward in a manner commensurate with power law breakdown. The

700 degree data is suspect for reasons associated with the dynamic response of the

servohydraulic; it is included however for both for completeness and because we are

not certain that the data is actually incorrect. It would be interesting to perform

constant structure tests at higher strain rates to investigate this behavior.

Although the constant structure data for the Fe - 2% Si may be represented by an

exponential, constant structure stress drop tests performed on other metals suggest

a power law asymptote in the low strain rate creep regime [Sherby et al. 1977]. For

this reason we selected equation 4.1.3 which may accomodate this transition from

an exponential to a power law.

2. Regardless of the form of the rate equation, we insist that the steady state value

of the internal variable (s,,) increase monotonically with steady state stress (os).
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This not only makes sense physically but also corresponds to measurements of room

temperature yield stress as a function of steady state stress [Young and Sherby,

1973]. One may check whether the three proposed rate equations accomodate this

requirement by assuming steady state conditions and equating each rate equation

to known empirical relations for steady state behavior. By eliminating strain rate

as the common variable we may determine whether the resulting functional de-

pendence between the steady state values of stress and the internal variable is

reasonable.

Following this procedure, equation 4.1.1 requires an unreasonable relationship be-

tween steady state stress and steady state value of the internal variable in order

to reproduce power law breakdown. The steady state strain rate/stress relation-

ship for many materials including most metals in the hot working regime may be

represented by equation 4.1.4:

is$ = As, exp (-S-o) [sinh(aoss)]1/m, 4.1.4

where the "ss" subscript denotes quantities relevant only to steady state conditions.

If we assume steady state conditions and then apply 4.1.4 for the steady state strain

rate in 4.1.1, we obtain:

sss = Q [ln {--A-exp (.Q- Q ) [sinh(aco.)]4lm}] -  4.1.7

Wong and Jonas [1968] have fit 4.1.4 to pure aluminum within a wide range of

temperatures, strain rates, and stresses to find the following constants:

QSS = 156.0 kJ/mole,

a = .0446 MPa - 1,

1/m = 4.70,
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Ass = 2.34 x 1010 sec 1 .

If we assume additionally the following values for equation 4.1.1:

A = 1 x 100 sec 1 , and

Q = 142.0 kJ/mole, (self-diffusion),

then substitution of these values into 4.1.7 yields, for a representative temperature

of 200 degrees Celsius:

s33 = 36.0a,, [In {0.067[sinh(.0446a, )14.7}]-. 4.1.8

The steady state stress/internal variable relation aip expressed by 4.1.8 is shown in

Figure 4.13. The negative values of state and the singularity indicates that equation

4.1.1 is inadequate to simulate hot working.

3. Generally accepted notions of the stress dependence of the pre-exponential create

a situation for equation 4.1.2 similar to that described in item 2 above for equation

4.1.1. Stress dependence of the pre-exponential is generally derived to be propor-

tional to stress raised to a low power, either one or two [Argon, 1975]. If we assume

two to be an upper bound and then follow a procedure identical to that followed in

reason two above, we obtain the following expression correlating steady state stress

and steady state deformation resistance:

A., exp - [sinh(aco,,)]l/m = A exp - 1 - 4.1.9

where the variables have the same interpretations as in item 1. Rearranging and

using the same values for aluminum used before yields:

0.067[sinh(.0446a)] 4.7  )exp [36.0k-] 4.1.10
\ 3 Ss -S3.5

The values of s,, corresponding to variation in o,,, may be determined numerically

from 4.1.10. Figure 4.14 plots the relationship resulting from such a determination.
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Once again the variation in the value of the internal variable at steady state with

respect to steady state stress is not what we should reasonably expect.

4. The fact that the ratio of equivalent stress/internal variable appears twice in equa-

tion 4.1.2 complicates the determination of material parameters significantly when

fitting the rate equation to actual material data. As will be seen, much of the

following analysis exploits a desirable feature of the rate equation to be inverted to

produce an analytic relationship of the form:

0" = CS,

where c depends only on temperature and strain rate. Equation 4.1.2 does not

permit such an inversion.

The material parameters associated with equation 4.1.3 may be evaluated directly from

the jump test data. The procedures and numerical routines used to obtain these pa-

rameters are described in Chapter 5. Figure 4.15 illustrates the correspondence between

the experimental data and the rate equation with the following values for the material

parameters:

Q = 247.5 kJ/mole

A = 1.26 x 108 sec 1

m = .22793

The value of Q is within the range of activation energies obtained by other investigators

for self-diffusion in alpha iron: 239 to 251 kJ/mole [Frost and Ashby, 1982]. It is lower

than the value of 333.6 kJ/mole obtained by Uviia and Jona, [1968 by fittling equation

4.1.4 to a set of steady state stress and stress rate data on a Fe - 3% Si alloy. There is

no reason to expect the activation energies obtained in this investigat;on and by Uvira

and Jonas to be similar. The value c .,Jied through the jump tests is a consequence of
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constant structure rate dependence while that obtained from steady state data provides

a weighted average of both this dependence and the thermally activated processes con-

trolling the evolution of state. The correlation between the data and the fit rate equation

is excellent. We therefore adopted equation 4.1.3 as the rate equation. The parameter

in the rate equation is indeterminate. We chose to include in order to restrict values of

the internal variable s to be at all times greater than &. This corresponds to requiring

the proportionality constant c to be less than one, where u = cs for isothermal, constant

true strain rate conditions. For 4.1.3, c is:

c = sinh - 1 [* exp . 4.1.12

For the rest of this investigation we assume a value of = 5.0.

To recapitulate, the rate equation which will be used throughout the rest of this

investigation is:

C = A exp (-!) [sinh ({)]. 4.1.3

where A, Q, and m are material parameters which should be determined from constant

structure, jump test data.

4.2 Evaluation of the Static Recovery Function: i(O, s)

Several means are available for decoupling the dynamic and static terms of the evolution

equation for s represented by equation 4.4, restated here:

= h(&,s,0)2 - i(s,0). 4.4

Certainly, one may assume that one term predominates within a. particular tempera-

ture/strain rate regime. We expect the effect of the static recovery function to diminish

as the strain rate increases or as the temperature decreases. One may therefore assign

a regime where static recovery may be neglected and the strain hardening data used to
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characterize only the dynamic term of the evolution equation. We may similarly perform

tests where the hardening function h may be considered neligible. As will be shown be-

low, this may be accomplished either via some extrapolation technique or by static hold

tests which enforce a zero plastic strain rate.

Experimental determination of a static recovery function of the form

= (O,s) 4.2.1

is particularly arduous since recovery testing typically yields only one data point, i.e. a

"recovered" state, per test. Characterization of a recovery function therefore requires nu-

merous tests to completely capture the effect of each of the relevant parameters. Different

investigators have proposed different experiments to examine static recovery phenomena.

Most assume a Bailey-Orowan form for the combined effect of hardening and recovery,

and then propose a procedure whereby the hardening rate may be considered to be negli-

gible relative to the recovery term. We have not found any investigator who has evaluated

recovery data directly in order to determine an internal variable based, static recovery

function.

Perhaps the first comprehensive phenomenological investigation of hardening and

recovery was performed by Mitra and McLean [1966], who, following a suggestion of

Cottrell and Aytekin [1950], used stress drop experiments to evaluate a recovery function

based on stress. They assumed that the recovery function could be represented as:

(da.

They then performed a series of stress drop tests from the same initial stress, tempera-

ture, and strain, and then associated the drop in stress (AZo) with the time increment

(At) required to reach a new steady state strain rate. Figure 4.16 illustrates one such

stress drop test. They then plotted the stress reductions versus the associated recovery
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time. The instantaneous recovery rate was assumed to be slope of the resulting curve

extrapolated back to a zero stress reduction:

= lim (AO/At), 4.2.2Aa-0

which is illustrated in Figure 4.17.

Kocks [1975] proposed two methods of evaluating . Method one consisted of imposing

strain rate jumps from identical steady state conditions and measuring the associated

instantaneous rate of change in stress. Back extrapolation of the resulting data to zero

strain rate as illustrated in Figure 4.18 would then provide the recovery rate. Method two

consisted of measuring the rate of change of stress immediately following a large drop in

strain rate from steady state conditions (where the rate of recovery supposedly equals that

of hardening). If the drop in strain rate is at least one order of magnitude, then Kocks

hypothesized that since the rate of hardening is assumed in a Bailey-Orowan formulation

to be proportional to the strain rate, then the hardening term would be negligible relative

to the static softening term, which would be unaffected by the reduction in strain rate.

The rate of change of stress would therefore be due purely to static recovery in the

absence of significant hardening or dynamic recovery. Both of these methods possess the

operational disadvantage of attempting to measure the rate of change of stress associated

with a very short transient. No investigations have been found which used either of these

two methods to evaluate the recovery function r.

An additional test of static softening mechanisms which has been employed exten-

sively in investigations of metal working behavior is the load-unload-hold-reload test

[McQueen, 1985; Luton. et al., 1980; Petkovic, 19791. Employed primarily to simulate

multistage hot working, specimens are deformed, usually isothermally, either in compres-

sion or torsion to a given strain, unloaded, held for varying time periods, then reloaded.

The load-unload-reload cycle may be repeated many times sequentially on the same
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specimen to simulate complicated, multistage hot working processes. The change in

state resulting from a particular hold period may be characterized by the yield stress ob-

tained on reloading the specimen. The test possesses the benefit of avoiding the multiple

uncertainties (and controversies) associated with both measuring and interpreting the

transients associated with changing the stress or strain rate. The test, however, suffers

the same shortcoming as the jump test, since some semi-arbitrary criteria must be used

to measure the yield stress upon reloading. The same arguments can be made as in the

case of the jump test that the variation in yield stress is relatively small given sufficient

resolution on the reloading transient.

Rather than fixing a final form for the recovery function and then using recovery

data to determine the parameters of that function, the following technique is proposed to

characterize the static recovery function assuming the following intermediate structure

for the evolution equation for the internal variable:

h(o, 0, s)CT - i(s) exp 4.2.4

Here, we assume that the dependence of static recovery on the temperature and the

internal variable may be expressed through the product of an Arrhenius term with a

constant activation energy, Qr, and a function depending only on s. The activation

energy Qr is expected to be different from that associated with the rate equation, Q.

Since static recovery is generally assumed to be the result of dislocation climb [Hirth,

1982] Q, should be close to the activation energy for the self-diffusion of vacancies. We

therefore assume Qr = 300 kJ/mole, which is an average value for self-diffusion in alpha

iron [Frost and Ashby, 1982]. Chapter 5 describes a series of tests which validates this

assumption. The expectation is that we may design an appropriate technique so that we

only assume a priori equations 4.3 and 4.2.4, and then let the experimental data suggest

a form for i(s).
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The proposed procedure exploits the consequence of the above equations that the

internal variable s is at all times proportional to the stress 0r during an isothermal,

constant true strain rate test. That is,

a = cs, 4.2.5

where c is a function of the rate equation which includes strain rate and temperature

dependence (equation 4.1.12). This proportionality is central to the evaluation of both the

static recovery function i' and the hardening function h, for it allows us to use a measure

of stress to determine the internal variable s through the constant c. We therefore do

not have to measure s directly; we need only measure stress and assure that isothermal,

constant true strain rate conditions exist. This assumption may be made as long as the

functional dependence in the rate equation between the equivalent stress and the internal

variable is one-to-one for a given temperature and strain rate.

If we now perform load-unload-hold-reload experiments in isothermal, constant true

strain rate conditions, the difference between the stress just before unloading and the yield

stress upon reloading represents the change in state due only to static recovery. We can

then vary temperature (0), hold time (At), and stress before unloading (a,), maintaining

a constant value of c, and thus determine the temperature and state dependence of the

recovery function by measuring the value of stress upon reloading (rj).

The procedure proposed assumes that we have already determined the functional

dependence on temperature, which as stated, will be represented by an Arrhenius ex-

pression with an activation energy equal to that of self-diffusion. The data required is a

set of load-unload-hold-reload tests, where the stress before unloading, the temperature,

and strain rate are held constant. Figure 4.19 illustrates a series of such load-unload-

hold-reload tests. The only variable changed between tests is the hold time, At. The

dependent variable is the stress obtained upon reloading the specimen, a. The proce-
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dure effectively measures the integrated effect of recovery, then differentiates it to obtain

the recovery function. This is in contrast to the methods described at the beginning of

this section which attempt to measure recovery function directly.

In the absence of hardening or dynamic recovery (2P = 0), the evolution equation

becomes:

s = - (s) exp ( ).4.2.6
Integration yields

exp( 3'- = -At. 4.2.7

However, since we only know a and not s, we may express this as:

exp (Q ,) I/c d(a/c) At. 4.2.8
Ls I/c (ojc)=

From load-unload-hold-reload tests we may determine o,, af, and At. Differentiating the

integral on the left hand side of 4.2.8 with respect to fr /c yields:

d -[ /- d(a/c) I.1
7(afs/c) I,,/ - 4.9

or,

exp (.r.) - d At. 4.2.10
Re 0 (us/c) -d(as/c)

If we now know (or assume) Qr, we may use 4.2.8 to plot the hold period -At versus af /c,

the derivative of which, according to 4.2.10, is the reciprocal of the recovery function:

r(af/c) = exp -dA 4.2.11
d~af /c)

Figure 4.20 shows a schematic plot of hold period (At) versus the stress measured upon

reloading (oj), which may bc obtained from. a scrics of tests like those illustrated in

Figure 4.19. Figure 4.21 illustrates the result of treating the data in Figure 4.20 in the

manner proposed by equation 4.2.11. The data plotted in Figure 4.21 then represents

the recovery function i'(s,O).
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This procedure may be applied to the static recovery function proposed by both

Prinz and Argon [1984] and Nix and Gibeling [1985]. Slightly generalized, the form of

the function is:

yBexp( ( s 4.2.12

Here, IL is the shear modulus and B and p and material constants. There is an additional

temperature dependence of the pre-exponential in the Prinz and Argon and the Nix and

Gibeling models which has been neglected in 4.2.12. Given load-unload-hold-reload data

as described above, 4.2.12 applied to 4.2.10 yields:

-dAt exp / Qr\IL 70 4.2.13

d(o1 /c) \ROIpB (cI

The above procedure requires enough tests at a given temperature to be able to

determine the derivative on the right hand side of 4.2.10. It also presupposes knowledge

of the value of c and Q,. Once again, c is the proportionality constant defined by equation

4.1.12 and obtained from the strain rate equation. Qr may be estimated as the activation

energy for self-diffusion for the material of interest. It may also be determined by a series

of tests where through trial and error the same values of o, and a0- are obtained for two

tests at different temperatures but the same value of c. This can be accomplished only

by allowing a longer recovery time for the lower temperature test. If these conditions are

met, then for the two tests at two temperatures:

exp (- Qj-) ALt1 = exp (--L- A 2  4.2.14

and Q- may be determined.

4.2.1 Recovery Tests

A set of load-unload-hold-reload tests were performed on the silicon iron according to

the paradigm described above. Before performing these tests, however, we performed a
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series of tests to determine the temperature and strain at which static recrystallization

initiated. We then selected a temperature and strain below these values to assure that

the softening measured due to the hold period would be due solely to static recovery.

The initiation of static recrystallization was determined phenomenologically according

to a procedure described by McQueen [McQueen, 1982; Ryan et al., 1983]. A series of

tests were performed at increments of 100 degrees Celsius where a compression specimen

was deformed at a constant strain rate and temperature for a given strain increment,

unloaded, and held for a specified time. This was repeated for the same strain increment

until a true strain of approximately -1.2. The fractional softening for each hold period

was then plotted as a function of strain for each test. Fractional softening is defined as:

FS, = O',, - r(,l+l) 4.2.15
(T-u - O'y0

where

Oaun = stress before unloading nth strain increment,

r,(n+i) = yield stress upon reloading from nth hold period,

UO = original yield stress.

McQue.n found that during a given test, fractional softening remained relatively con-

stant if only static recovery was present. Static recrystallization, however, past a certain

initiation strain caused the fractional softening to increase.

The results of our multiple hold tests are included in Figures 4.22 to 4.25. The

fractional softening versus strain is plotted in Figure 4.26. Notice that the fractional

softening begins to increase at 1000 degrees Celsius at a true strain of 0.6. We therefore

chose our recovery test conditions to be at 900 degrees Celsius, at a strain rate less than

that used . r the multiple hold tests, (-0.02 per second instead of -0.1 per second),

and at a strain of -0.3. Examination of the etched grains of specimens tested at this

conditions did not show any regions of recrystallized grains.
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The results of the recovery tests for these conditions are presented in Figure 4.27. One

obvious result of these tests is that the stress measured upon reloading is not significantly

different from that measured just before unloading, even for relatively long hold periods.

We should therefore expect the rate of static recovery to be commensurately low.

Another result from these recovery tests is that when the "yield stress" is measured

upon reloading, the greatest incremental decrease in stress occurs during the shortest

hold period. In other words, the rate of static recovery decreases dramatically as the

hold period increases. This is not necessarily unexpected, for we may hypothesize short

range rearrangements due to the polarization of a deformation-induced microstructure

or anelastic effects which produce a rapid apparent initial rate of recovery. This result

was not obtained by Petkovic [1979] who performed similar load-unload-hold-reload tests

on polycrystalline copper. Petkovic found that some incubation time was necessary after

unloading before any noticeable recovery was obtained upon reloading. This incuba-

tion period extended to as long as 100 seconds at 500 degrees Celsius (0.6 homologous

temperature).

The question arises however whether we should model this behavior. We decided to

ignore this initial rapid unloading to the following reasons:

1. Insufficient recovery testing was performed to characterize the extent of this effect.

2. If this initial high recovery rate is due to microstructure polarization or anelastic

effects, we do not expect these eifects to significantly alter the large deformation

material response.

3. If the procedure described in Section 4.2 for evaluation of the static recovery func-

tion is followed, the high apparent initial recovery rate produces an unreasonably

strong dependence of recovery on the internal variable. This dependence corre-

sponds to a power law dependence of recovery rate on the internal variable s raised
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to a power exceeding 100.

We therefore chose to consider data for recovery hold periods exceeding 20 seconds to fit

a material function for static recovery.

Following the procedure described in Section 4.2, a 0.002 strain offset stress was

measured from the reloading segment of each test. The variation in this "yield" stress

was then used as a measure of the variation in state due to different hold periods. This

data is plotted in Figure 4.28. Continuing with the development presented in Section

4.2, we assume that the recovery function may be represented by equation 4.2.6:

s = -P~(s) exp ( -hl) 4.2.6

Equation 4.2.11 then expresses the recovery function in terms of the derivative of the

data in Figure 4.28:

P(af /c)exp- - - 4.2.11
d(c, /c)

Figure 4.29 contains the data treated in the manner suggested by 4.2.11, which then

represents the recovery function. Due to the small number of tests the derivative was

taken to be the slope of the line drawn between sequential data points.

The static recovery function which we considered is a generalized form of a function

proposed both by Nix and Gibeling [1985] and Prinz and Argon [1984] based on models

of dislocation climb causing static recovery in dislocation cell walls:

S= -B exp ,) 4.2.12

where yi is the shear modulus and B and p are material parameters. Both of the above

pairs of investigators hypothesize a value of p between four and six.

Fitting equation 4.2.13 to the recovery data illustrated in Figure 4.29 produced the

following values for the material parameters:
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B = 1.08 x 106° MPA/sec

Qr = 300 kJ/mole,

p = 20.6.

The procedures and numerical routines used to obtain these parameters are described

in Chapter 5. Figure 4.30 indicates the fit of equation 4.2.12 to the recovery data using

the above parameters. The lack of correlation with the high recovery rate portion of the

data reflects the previously described decisior. to ignore the initial rapid static recovery

data.

Notice that the exponent p is significantly greater than that predicted by Argon and

Nix. It is unclear whether this is due to a stronger dependence of recovery on state than

was anticipated or whether some characteristic of the experimental procedure produces

this dependence. Since these experiments are rather arduous when performed with Fe -

2% Si, further investigation of both the phenomena and the experimental method would

be easier if the model material were a lower melting temperature metal such as aluminum.

Nevertheless, equation 4.2.12 with the above material parameters provides a measure

of static recovery, we believe the first measure of static recovery employing an internal

variable formulation. To summarize, the static recovery function for the internal variable

s is:

rexp RO (), 4.2.12

where B, Qr, and p are material parameters.

4.3 Evaluation of Dynamic Hardening and Recov-
ery Function: h(3,s, O)

If we now consider an experiment where the temperature and true strain rate are held

constant, then according to section 4.1 for fully developed flows where C - C- there is a
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unique proportional relationship between the equivalent stress and the internal variable

throughout the test:
s ,4.3.1

C

where c is constant for a given temperature/strain rate pair. We can therefore express

the evolution equation for the internal variable in terms of stress:

0'= ch 0), C- ,0 ,4.3.2

~ C
0*

0)_ 0) .3

The slope of the stress versus plastic strain data (, P), or hardening data, from an

isothermal, constant true strain rate test therefore reflects the internal variable evolution

equation for the above model. The hardening data however incorporates contributions

from both functions h and representing the evolution of structure. Additional testing or

assumptions must be made to further separate these equations for evaluation. Figure 4.31

illustrates an isothermal, constant true strain rate test path on the schematic introduced

in Figure 4.1.

A series of isothermal, constant true strain rate tests have been performed on the iron

- 2% silicon. These tests were performed over a temperature range of 700 to 1200 degrees

Celsius (.55 to .83 Tmn) and a strain rate range of 10-' to 1 sec - '. 700 Celsius represented

the lowest temperature at which tests could be performed due to the load limit of the

ceramic load train. We did not perform tests above 1200 Celsius due to excessive creep

of the load train. The lower limit on the strain rate of 10- 3 sec- 1 was lowest true strain

rate obtainable with the analog function. generator. The highest strain rate represented

both the limit of the frequency response of the servohydraulic and the strain rate where

adiabatic heating invalidates isothermal test conditions.
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Figures 4.32 through 4.36 contain the stress/strain data for the different temperatures

at constant strain rate, while Figures 4.37 through 4.40 illustrate the same data, except

for the various strain rates at constant temperature. Notice that the stress eventually

reaches an apparent steady state value at strains approaching 0.5. Notice also that we

have chosen to neglect data below an initial strain of 0.01. Since the specimens are

grooved at the ends, we anticipate that at the test start, some "settling" of the ends

will occur, rendering accurate interpretation of the small initial strains doubtful if not

impossible. Table 4.2 lists the isothermal, constant true strain rate test parameters and

values of saturation stress (a*) reached in each test.

Figures 4.41 through 4.44 represent the hardening data for the constant true strain

rate tests. Elastic strains were subtracted before the hardening (do/deP) was determined.

The program used to numerically determine the hardening is included in Appendix A.

Elastic constants for the Fe - 2% Si alloy are listed as a function of temperature in Table

4.3.

The hardening data was used to determine a functional form for the evolution equation

for the internal variable. Section 4.0 indicated that given our chosen form for the rate

equation, we may represent the evolution equation for the internal variable s in terms of

hardening and stress:
d & -= Ch , ,0) - c 0) .4.3.3

-=chdTO"- - c ,

Since we have performed experiments to evaluate the rate equation and static recovery

function, we may adjust the hardening data for the contribution of static recovery and

evaluate the form of h(&, s, 0).

One important result of the recove.y tests is that the static recovery function does

not appreciably affect the hardening data. The integrated contribution of the recovery

function to reducing the internal variable over a typical isothermal, constant true strain
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rate test is less than 1 percent of the instantaneous value of the internal variable. The

static recovery function therefore may be ignored rather than added back to the hardening

data, and the hardening data, in the absence of any contribution of static recovery, then

represents:

d-"' " ch ,c'0 4.3.4

The form of h(&, s, 0) which we first investigated was the simple linear softening function

proposed by Anand [1982]:
ds = ho()1 - 4.3.5

Here, h0 represents a constant rate of athermal hardening which via mechanistic argu-

ments is generally assumed to be of the order of one hundredth the shear modulus (,U/100)

[Kocks, 19661. The ratio (s/s*) represents deformation dependent softening phenomena.

The denominator s* is a saturation value of s associated with a given temperature, and

strain rate (or stress); The combined term ho(s/s*) represents the rate of dynamic soft-

ening. For isothermal, constant true strain rate tests where - = cs, equation 4.3.5 may

be expressed a.
d& = cho 1 - 4.3.6

where o = cs* is the saturation or steady state stress. Equation 4.3.5 is attractive

on practical grounds since it supposes two separate phenomena, hardening and dynamic

softening, which interact linearly and for which models may be independently formulated

and then summed. The constant c represents the contribution of constant structure defor-

mation kinetics, manifested here as a rate sensitivity of strain hardening. Equation 4.3.6

may be integrated directly to yield the Voce [1955] equation for stress/strain behavior:

F -. (FS - uo) exp ,h 4.3.7

where ao = cso and so is the initial value of s.
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Examination of the hardening data, Figures 4.41 to 4.44, however, indicates that the

softening is not linear; there is a substantial change in the softening rate as the steady

state stress is approached. We chose to accomodate this change in the softening behavior

via a modification to equation 4.3.5 through the introduction of an exponent a to yield:

ds*ds=ho1- 4.3.8

or, for an isothermal, constant true strain rate test:

dE = cho (I - 3;4.3.9

Figure 4.45 indicates the behavior of the hardening version of equation 4.3.9 as tuie value

of a is varied. Equation 4.3.9 also retains the feature t.f a saturation stress, which is

supported by the Fe - 2% Si data, where the stress appears to reach a constant value

given isothermal, constant strain rate conditions. This feature does not necessarily extend

to low (0 0.3 Tm) temperatures where many materials do not appear to demonstrate a

saturation stress, even for very large strains [Hecker, 1981]. Figure 4.46 indicates the

correspondence between equation 4.3.9 and hardening data for a given strain rate and

a range of temperatures. A value of a = 1.5 was found to best represent the hardening

curves for the Fe - 2% Si.

For low values of the internal variable s (s < s), the value of h0 may be interpreted

as the rate of athermal hardening. The value of h0 found for the Fe - 2% Si was 3498.0

MPa, which corresponds to a value of approximately yi/20. This is greater than the

hardening rate obtained and derived for State II hardening in single crystals which as

stated previously is expected to be in the range of /I/100 to y/200.

The integraled form of thc cquation 4.3.9 yiclds:

- = -* - [(&- &)(1-a) + (a - 1) {(cho)(&-)a} lF]Ia, 4.3.10

where &o = cso and so is the initial value of s.
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This formulation also requires an expression for s*, which may be interpreted as the

saturation state. We propose a phenomenological form for s*(O, &, s, Z) where

S ' 9 Rexp\R9)J . 4.3.11

This form is motivated by requiring that the saturation state increases with increasing

strain rate and decreasing temperature, and is influenced by thermally activated processes

represented by Qd,, the activation energy associated with dynamic softening.

Once again, since we may represent s* by 3*/c, we may plot s* versus strain rate in

Figure 4.47 by dividing the saturation stress obtained during isothermal, constant true

strain rate tests by the constant c determined from the rate equation. The figure indicates

that a power law relationship between strain rate and saturation state is justified. Figure

4.48 illustrates the correlation between the steady state data and a nonlinear least squares

fit of equation 4.3.11 to the same data. Chapter 5 describes the routines and procedures

used to fit the data to the material functions. The material constants obtained from the

nonlinear least squares fit to 4.3.11 are:

9 = 36.3 MPa

n = .06272

Qds = 439.4 kJ/mole

The value of the activation energy associated with the steady state relation (439.4

kJ/mole) is almost twice that obtained for the rate equation (247.5 kJ/mole). The

large value of 493.4 kJ/mole is an artifact of the form of equation 4.3.11. If we cast this

equation in the form:
r.-Pi n~

s. = - exp ,OS 4.3.12

then we obtain a value of Qd, = 27.6 kJ/mole with no change to the values of the other

two material parameters.
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Figure 4.49 demonstrates the relationship between steady state stress and the steady

state value of the internal variable for different values of strain rate and temperature.

An interesting feature of this plot is the linear relation between state and stress which

reaches from the power law into the power law breakdown regime. One interpretation of

this result is that power law breakdown is a consequence of the kinetics of the deformation

process (incorporated through the parameter c) and is not due to any change in the basic

processes governing the evolution of state. As a result power law breakdown should be

represented by the rate equation in the manner provided by equation 4.1.3.

The form of the dynamic term of the evolution equation was finally taken to be:

h(O,s,&) = ho(I - sgn (1 - s 4.3.13

with s" given by 4.3.11. In 4.3.13 lxi denotes the absolute value and sgn(x) is the sign

function defined as:
S1 x > 0

sgn(x) = 1 x<01m-1 x<0

The absolute value and sign function are necessary to accomodate strain softening when

s' is less than s. Such a situation is certainly possible in hot working processes where

the strain rate decreases or the temperature increases at a material point. Such a change

may cause the current value of s to be greater than the asymptotic value represented by

s* calculated under the new conditions. Chapter 6 contains the results from strain rate

decrement tests which indicate the necessity of this form.
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4.4 Summary of Constitutive Model

Once the different material functions were determined, they were combined into the the

constitutive equations summarized below.

The rate equation:
= A exp (--) [sinh ( ) . 4.3

The evolution equation for the internal variable:

= ho (1 6' sgn 1- .)- BIL exp (-) (-)P 432

where

s* =4 exp (Q)]fl. 4.3.11

The following chapter details the procedures used to determine the model parame-

ters from a set of appropriate experimental data. The list of model parameters are:

A, Q, m, , ho, a, ., Qds, n, B, Q, and p. Also, y(O) is the elastic shear modulus used purely

for purposes of normalizing the value of s. Its temperature dependence is listed in Table

4.3.
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TABLE 4.1

Iron - 2% Silicon Jump Test Data

Tc-st Temperature Initial Final Stress Stress
Number Strain Rate Strain Rate before jump after jump

(Celsius)_ (sec-1) (sec1) (MPa) _I(MPa)

1700. 2.O0E-4 2.OOE-4 74.0 74.0
2 700. 2.O0E-4 2.02E-3 74.0 90.5
3 700. 2.00E-4 9.42E-3 74.0 102.3
4 700. 2.OOE-4 8.66E-2 74.0 131.0
5 700. 2.00E-4 8.99E-1 74.0 182.0
6 800. 2.20E-4 2.20E-4 30.0 30.0
7 800. 2.20E-4 2.11E-3 30.0 41.6
8 800. 2.20E-4 1.02E-2 30.0 49.5
9 800. 2.20E-4 9.35E-2 30.0 65.4
10 800. 2.20E-4 .953E-0 30.0 78.3
11 900. 1.90E-4 1.90E-4 12.0 12.0
12 900. 1.90E-4 2.07E-3 12.0 20.0
13 90 .0- .7- 202.
14 900. 1.90E-4 1.97E-2 12.0 35.0
15 900. 1.90E-4 1.01E-1 12.0 47.0

16 1000. 2.35E-4 2.35E-4 7.0 7.0
I .7 1000. 2.35E-4 2.OOE-3 7.0 10.6

183 1000. 2.35E-4 1.OOE-2 7.0 15.5
19 1000. 2.35E-4 8.79E-2 7.0 21.6
20 1000. 2.35E-4 .899E-0 7.0 28.4
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TABLE 4.2

Iron - 2% Silicon

Isothermal, Constant True Strain Rate Tests

Temperature Strain a*

Test ID (Celsius) Rate (MPa)

(sec - ')
8508132 700 1.0 229.97
8511291 750 1.0 180.85
8506191 800 1.0 131.38
8511281 800 1.0 138.25
8506201 800 .1 93.73
8504132 800 .1 91.36
8054011 800 .01 68.85
8503311 798 .001 46.16
8511292 850 1.0 108.44
8504012 850 .01 49.63
8506141 900 1.0 84.38
8502071 900 .1 55.29
8501231 900 .01 34.77
8504131 899 .01 36.60
8501221 900 .001 21.11
8412151 950 .01 25.18
8511261 1000 1.0 57.57
8511301 1000 1.0 53.96
8503011 1000 .316 44.71
8501081 1000 .1 32.57
8502051 1000 .0316 26.78
8501241 1000 .01 19.77
8502061 1000 .00316 15.76
8501121 1000 .001 10.75
8511271 1100 .502 34.11
8504041 1100 .316 27.99
8504061 1100 .316 28.12
8502081 1100 .1 21.33
8504021 1100 .01 12.24
8504121 1098 .001 6.63
8508131 1200 1L0 25.66
8508091 1200 .1 14.72
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TABLE 4.3

Elastic Constants for Fe - 2% Si

Temperature A E j
(Celsius (GPa) (GPa)M

700 57 150 .32
800 50 135 .35
900 42 115 .38

1000 37 105 .41
1100 32 93 .44
1200 30 87 .47

Source: ASM Handbook, Volume 1, pg 641.
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Figure 4.2b Constant structure data for 304 stainless.
Reference [Cuddy, 1970)
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Figure 4.2 Constant substructure data for aluminum.
Reference [Gibeling and Nix, 19821
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Figure 4.3 Schematic of ser-ies of strain rate jump tests where
jumps occur at the same iniitial state.
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300.0

Fe- 2% Si
250.0 700 C = -0.924 sec 1

200.0 -0.087

t 150.0 -0.0094

100.0 -0.002

-0.0002

50.0 --

0.0 I
0.0 0.2 0.4 0.6
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Figure 4.5 Strain rate jump tests with Fe - 2% Si to determine constant
structure rate dependence.
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-0.0002
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4.6 Strain rate jump tests with Fe - 2% Si to determine constant
structure rate dependence.
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-, 80.0

60.0
W¢¢ -0.101
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-0.0021

-0.0002
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True Strain

Figure 4.7 Strain rate jump tests with Fe - 2% Si to determine constant
structure strain rate dependence.
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Figure 4.8 Strain rate jump tests with Fe - 2% Si to determine constant
structure strain rate dependence
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Strain Rate Jump Test
Determination of Linear Strain Offset Stress: ao

aaI

S..-

V)

0.002 strain offset

0.0 I l
0.0 0.1 0.2 0.3 0.4

Strain

Figure 4.9 Schematic of strain rate jump test indicating 0.002
linear strain offset stress, a,.

1.0 I

Fe - 2% Si

0.0 Constant State Data
,- = -0.002 see-

V-. s: 1000 C C= -. 1
s2: 900 C, = -.2
s.: 800 C, =-.2

s4: 700 C, c -. 2-2.0

cn -3.0
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,-4

4.0 s5 s4 s3 S4

-5.0 , , , v I I I I v v I It J

0.5 1.0 1.5 2.0 2.5

Log,, Stress (MPa)

Figure 4.10 Stress/strain rate dependence of Fe - 2% Si at different
constant states (s,), determined from strain rate jump t~sts.
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Figure 4.11 Steady state strain rate/stress data for
1100 aluminum fit to hyperbolic sine function.

Reference [Jonas, 1969]
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V) 20.0 III-" Fe -2% Si
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Z 0 s3 (800 C, e = -0.2)
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Figure 4.12 Stress/strain rate dependence of Fe - 2% Si at different
constant states (s,). The strain rate has been normalized by an
Arrhenius term with constant activation energy of 251 kJ/mole.
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-1000.0
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Steady State Stress o,, (MPa)

Figure 4.13 Relationship between steady state stress and the internal
variable resulting from use of equation 4.1.1 as the rate equation.
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St.-ady State Stress 0',, (MPa)

Figure 4.14 Relationship between steady state stress and the internal
variable resulting from use of equation 4.1.2 as the rate equation.
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2.0

Fe - 2% Si - Experimental Data

1.0 Constant State Data - -- Model Correlation

s: 700 C, c = -. 2

0.0 s2: 800 C, C = -. 2
0/S s 3: 900 C, C = -. 2
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Figure 4.15 Correspondence between constant state data and fit of equation

4.1.3 to the same data.
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Stress Drop Recovery Test
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Figure 4.16 Schematic stress drop test illustrating parameters used

by Mitra and McLean [1966) to evaluate recovery rate.
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Stress Drop Test

Recovery Rate Extrapolation

. i-= (A./At)
0a 0

0

Stress Reduction Aa

Figure 4.17 Illustration of back extrapolation of stress drop test
to determine static recovery rate. Points indicated are for

illustration only; they do not represent actual data.

I I I

Strain Rate Jump Test

Recovery Rate Extrapolation

1 = (M/At)
=o

b

(I)
(") - r

I I I

0.0

Strain Rate (dy/dt)

Figure 4.18 Illustration of static recovery rate measurement via back

extrapolation of strain rate jump data. Proposed by Kocks [1977].
Points are for illustration only and do not represent test data.
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Recovery Test Example
Load-Unload-Hold-Reload Tests

CO)

Taa

.4)

0.0 ,I I -
0.0

Strain

Figure 4.19 Schematic of load-unload-hold-reload test series used to
evaluate rate of static recovery. Curves do not represent actual
test data.

Recovery Test Example

Load-Hold-Unload-Reload Tests

0
0'I-

0

00

0.0 
0

Yield Stress aj

Figure 4.20 Hold period versus stress obtained immediately after
reloading from hold period. Each point represents one hold period.

Points are for illustration only and do not represent real data.
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Recovery Test Example
00
QLoad-Hold-Unload-Reload Tests
I)

-I

0

0.0

State Variable (s=cr/c)

Figure 4.21 Schematic of load-unload-hold-reload data treated in manner
suggested by equation 4.2.11. Curve is for illustration only; it
does not represent actual test data.
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Figure 4.22 Multiple hold test data of Fe - 2% Si. Tests performed
at 800 Celsius with 0.1 sec- 1 constant true strain rate. Duration of each
hold period was 20 seconds.
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Figure 4.23 Multiple hold test data for Fe - 2% Si. Test performed at 900
Celsius with 0.1 sec "1 constant true strain rate. Duration of each hold
period was 20 seconds.
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Figure 4.24 Multiple hold test data for Fe - 2% Si. Test performed at 1000
Celsius and 0.1 sec- ' constant true strain rate. Duration of each hold
period was 20 seconds.
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Figure 4.25 Multiple hold Lest data for Fe - 2% Si. Test performed at 1100
Celsius and 0.1 sec-' constant true strain rate. Duration of each hold
period was 20 seconds.
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Figure 4.26 Fractional softening as a function of strain, determined
from multiple hold tests on Fe - 2% Si.
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Figure 4.27 Load-unload-hold-reload tests on Fe - 2% Si. Data represents
reload segment. Data has been shifted horizontally to superimpose
elastic slopes.
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Figure 4.28 Hold period versus stress upon reloading for Fe - 2% Si.

Tests performed at 900 degrees Celsius and at 0.02 sec "' constant
true strain- rate.
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Figure 4.29 Recovery functic7. dependence on state for Fe - 2% Si.

Data obtained front Figure 4.28 according to equation 4.2.11.
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Figure 4.30 Fit of power law static recovery function to Fe - 2% Si
recovery test data.
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Figure 4.31 Schematic of isothermal, constant true strain test
in stress, temperature, strain rate space. Material begins
at sfate s. and reaches steady state value of s*.
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Figure 4.32 Isothermal, constant true strain rate tests on Fe - 2% Si
at 800 degrees Celsius and different strain rates.
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Figure 4.33 Isothermal, constant true strain rate tests on Fe -2% Si at
~900 degrees Celsius and different strain rate.
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Figure 4.34 Isothermal, constant true strain rate tests on Fe - 2% Si at
1000 degrees Celsius and different strain rates.
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Figure 4.35 Isothermal, constant true strain rate tests on Fe - 2% Si at
1100 Celsius and different strain rates.
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Figure 4.36 Isothermal, constant true strain rate tests on Fe - 2% Si at
1200 degrees Celsius and different strain rates.
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Figure 4.37 Isothermal, constant true strain rate tests on Fe - 2% Si with
strain rate of -1.0 sec "' and at different temperatures.
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Figure 4.38 Isothermal, constant true strain rate tests on Fe - 2% Si with
strain rate of -0.1 sec-1 and at different temperatures.
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Figure 4.39 Isothermal, constant true strain rate tests on Fe - 2% Si with
strain rate of -0.01 sec-1 and at different temperatures.
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Figure 4.40 Isothermal, constant true strain rate tests on Fe - 2% Si with

strain rate of -0.001 sec -1 and at different temperatures.
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Figure 4.41 Plastic hardening data (da/dcP) derived from isothermal,
constant true strain rate tests on Fe - 2% Si. Strain rate of -1.0 sec.
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Figure 4.42 Plastic hardening data (da/dcP) derived from isothermal,
constant true strain rate tests on Fe - 2% Si. Strain rate of -0.1 sec-.
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Figure 4.43 Plastic hardening data (da/dcP) derived from isothermal,
constant true strain rate tests on Fe - 2% Si. Strain rate of -0.01 sec-.

300.0 , 1 1

Fe - 2% Si
= -0.001 seco' 800 C

200.0
a4
0.,

w

b
*e100.0

900
1000

1100
0.0 ,On-

0.0 10.0 20.0 30.0 40.0 50.0

Stress (..)Da)

Figure 4.44 Plastic hardening data (da/dcP) derived from isothermal,

constant true strain rate tests on Fe - 2% Si. Strain rate of -0,001 sec "1.
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Figure 4.46 Correspondance between hardening data and equation 4.3.9
for a value of a=1.5.
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Figure 4.47 Saturation value of internal variable derivcd via
s" = a'/c versus strain rate for Fe - 2% Si. Data obtained
from isothermal, constant true strain rate tests.
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Figure 4.48 Fit of equation 4.3.11 for saturation of internal variable
data for Fe - 2% Si. Data obtained from isothermal, constant true
strain rate tests.

103



400.0 , , i , I ' , , , I ' i

Fe - 2% Si350.0

Steady State Internal Variable 0

300.0 0

250.0 0

200.0 0000
0

~~0

150.0 0 8D

100.0
50.0

50.0
0 .0 , I I I I, I , I , , I , , , ,

0.0 50.0 100.0 150.0 200.0 250.0

Steady State Stress (MPa)

Figure 4.49 Saturation value of internal variable versus saturation
stress for Fe - 2% Si. Data obtained from isothermal, constant
true strain rate tests.
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Chapter 5

Determination of Material
Parameters

Fitting of the parameters associated with our constitutive model follows the progression of

testing described in the previous two chapters. Parameters associated with each material

response function are determined from the tests used to characterize that particular

aspect of material behavior. The rate equation parameters are therefore determined from

the jump test data, static recovery function parameters are determined from the load-

unload-hold-reload data, and the dynamic hardening and recovery function is determined

from the isothermal, constant true strain rate tests.

The fitting procedure exploits extensively the proportionality between stress and the

internal variable resulting from the consequences of an isothermal, constant true strain

rate test. At a fixed temperature and a fixed compressive strain rate, equation 4.1.3

implies:

= I1/c, 5.1

where c is a constant defined by

sinh- (-1 . 5.2
[{A~x \RO/j

This relationship permits the substitution of (Idl/c) for the internal variable s while

determining model parameters. Since the internal variable s represents some generalized
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resistance to plastic deformation it is difficult, if not practically impossible, to measure a

value of s directly. Ideally we would like to have some macroscopic or microscopic quantity

which we may correlate with s. Some possibilities for such measures are discussed in

Chapter 6. In the absence of a directly measureable quantity, equation 5.1 permits the

determination of model parameters without directly knowing the value of the internal

variable.

The following procedure provides a deterministic method for evaluating the material

parameters associated with the constitutive model presented in Chapter 4. The stress

after a change in strain rate, whether it be associated with a strain rate jump or a

recovery test reloading, is determined in our data as the stress corresponding to a 0.2%

strain offset from the strain at the change in strain rate.

1. Determination of rate equation parameters A, Q and m:

The strain rate jump tests provide constant state data for different states at different

temperatures. If we normalize the stresses after each jump by the stress before each

jump, then the rate equation eliminates the contribution of the internal variable

since the test before and after the jump is both isothermal and at a constant true

strain rate:
Lf cf S 5.3

oi ci

or,
sinh - 1 [{J exp (0) ]m.

ci sinh- 1 [{0 exp Ro

where

af  = stress immediately after jump,

0ai = stress immediately before jump,

i = strain rate after jump,
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i = strain rate before jump, and

0 = test temperature.

Equation 5.4 is fit to the jump test data (oj, cri, f, i, 0) for each temperature

through a nonlinear least squares fit to provide the parameters m and the combined

term

as a function of temperature. The pre-exponential A and the activation energy Q

are then determined via a second nonlinear least squares fit of the temperature to

the above term. The constant m is taken as the average value across all temper-

atures. Nonlinear fitting throughout this procedure was performed with an IMSL

numerical subroutine ZXSSQ which provides for minimization of a nonlinear ob-

jective function on the basis of a least squares residue. The programs used in the

fitting, ISOCON and its associated subroutine FITISO, are listed in Appendix B.

The three constants (A, Q, m) could be determined simultaneously via a three pa-

rameter least squares fit, but it was found that the two step procedure produced a

better correlation with the data.

Figure 5.1 indicates the correlation between the jump test data and the rate equa-

tion prediction using parameters determined via the above process.

It should be stated that the procedure described in this step does not produce an

unambiguous value for the activation energy, Q. Strain rate jump tests directly

measure the functional relation between stress and strain rate. Temperature jump

tests are necessary if one wishes to measure the activation energy directly. We are

able to determine an activation energy here since the rate equation cast in the form
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of equation 5.4 retains a variation with temperature. A different rate equation

may very well not permit the determination of an activation energy from strain

rate jump test data. Practically, very little error is introduced to the model if one

chooses to use the same value of activation energy for both Q and Qd,.

2. Determination of state/stress scaling factor :

As was indicated in Section 4.1 the parameter is a dimensionless scaling factor

included in the rate equation to enforce our requirement that the value of the

internal variable s always be greater than the value of the equivalent tensile stress

&. Motivated by an interpretation of s to represent some athermal measure of

deformation resistance, this corresponds to requiring the proportionality constant

c to be less than one, where &" = cs for isothermal, constant true strain rate

conditions. The parameter does not improve the predictive capability of the model;

it may be set equal to one with no adverse effect. A reasonable value of may

therefore be calculated by requiring:

S> sinh-1 [{exp () m

where the strain rate and temperature are the highest and lowest values of their

applicable ranges, respectively.

3. Determination of static recovery term parameters B, Q, and p:

The static recovery function parameters were determined via a nonlinear least

squares fit of equation 4.2.13 to the recovery data analyzed in the manner described

in Section 4.2, where 4.2.13 is:
-dAt 0 IP 07$

-- = exp I '1- 1-). 4.2.13

d(af /c) \. AB/

Here, c is the stress/internal variable constant defined by 5.2. We assumed here

that Q, equals the activation energy for s 'lf-diffusion of alpha iron, 300 kJ/mole.
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[Frost & Ashby, 1982] We provide two justifications for this assumption. One,

static recovery has been observed to be associated with non-conservative climb

of dislocations, [Takeuchi and Argon, 1976] the relevant activation energy then is

that of self-diffusion. Two, we checked this assumption via the following test. We

performed two load-unload-hold-reload tests at the same value of c but at different

temperatures (and consequently different strain rates). The strain rates needed

to produce the same value of c may be determined from the rate equation with

the parameters determined in Step 1. If we design the tests to obtain the same

values of stress just before unloading (oa) and immediately after reloading (0,f)

then, according to our model, the value of the internal variable is the same both at

the beginning and at the end of the hold period for both tests. If these conditions

are met, then for the two tests at the two temperatures according to 4.3.17:

exp _-L ) At, = exp At,. 4.2.14

Tests were performed according to the above procedure, varying the hold times

until the same value of of was obtained. The two tests used for the measurement

of Q, possessed the following experimental parameters:

Test Temperature Strain rate Hold strain ai af At
(Celsius) (1/sec) (MPa) (MPa) (sec)

1 800. .00506 .10 46.7 40.7 352.
2 900. .1 .20 46.5 40.8 20.

Equation 4.2.14 using the values from the above table produces a value of Q, -

300.2 kJ/mole, in excellent agreement with our assumed value for self-diffusion.

The recovery data used to fit 4.2.11 is plotted in Figure 4.29, and listed below in

Table 5.1. Fitting was accomplished via a nonlinear least squares fit similar to that
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used in Step 1. The programs used for the fitting, STATCON and FITREC, are

similarly listed in Appendix B.

Table 5.1

Recovery Test Data

900 Celsius - 0.02 1/sec

At oa (-dAt)/d(o'f/c)
(seconds) (MPa) (seconds/MPa)

20 33.6 2.67
70 33.1 31.25

150 33.5 42.19
300 32.9 78.74
500 32.2 86.96

The correlation between the recovery data and the recovery function prediction is

plotted in Figure 5.2. Notice that the exponent in- this case exceeds 20, significantly

greater than the exponent of 4 proposed by Argon [Prinz and Argon, 1984] and

Nix [Nix and Gibeling, 1985]. The point corresponding to the shortest hold period

was ignored in the curve fitting. We associated the rapid initial stress decrease

accompanying short hold times with very small scale rearrangement or anelastic

effects. One consequence of including this effect would be to increase the value

of the exponent p to magnitudes of 50 to 100. We therefore chose to ignore this

effect with the consequence of representing longer time recovery effects with greater

accuracy than short time effects.

It should be noted that one may evaluate the static recovery function using offset

stresses measured at a larger strain offset than the 0.002 strain offset used above.

This was done with the Fe - 2% Si data using a 0.02 strain offset. The value of

the exponent p resulting from the analysis exceeded thirty. Selection of a different

strain offset therefore did not reduce the relatively high magnitude of the state
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variable exponent.

4. Determination of the Saturation Stress a*:

The value of the saturation stress a* is determined for each test from the steady

state value reached in the (a, 0P) data1 .

5. Determination of a,cho, and ao:

The combined constant cho and the parameter a for each test are determined by

a least squares fit of the hardening (a, do'/de) data according to equation 4.3.9,

restated here:
d'a = ch (1 - )a

After the values of a and Cho are obtained the value of ro is obtained by a least

square fit of the constant strain rate (a, 6P) data to equation 4.3.10 for fixed values

of a and cho. Alternatively, cho, a, and a0 may be determined by a similar least

squares fit of the (a, 0P) data to the integrated stress-strain relation of equation

4.3.10. We believe that the first approach is more physically motivated, but the

second should work well, especially when it is difficult b..cause of lack of sufficient

data points or noisy data to differentiate numerically the (a, 0P) data. Normally

there is variation in the values of a determined from different tests. The value

of a is therefore determined as the average of the values determined from each

individual test. After the value of a is fixed, the least squares fit of equation 4.3.9

is performed to determine the final value of cho. For the 2% silicon iron the value of

a = 1.5 describes our experimental data well. Accordingly, for this material we fix

a = 1.5. The range of data used to determine cho and ao corresponds to 0P > 1%

because there are various uncertainties associated with measuring small strains

'If a steady state is not reached in the experiments, then a* is estimated by extrapolating the o
versus da/dP data to d/dcP = 0.
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in compression by our test techniques. Figure 4.46 illustrates the correspondence

between the hardening data and equation 4.3.9 using a = 1.5. The program used

in this step, QNON, is listed in Appendix B.

6. Determination of ho:

The value of ho is then obtained as the simple average:

ho ""E q  ([cho], Ici), 51

q

where [cho], is the value of cho determined in step 5 for test i, ci is the correspond-

ing value of c defined in 5.2, and q is the number of tests. The value of h0 was

determined to be 3498.0 MPa.

7. Determination of g, n, and Qd,:

The values of 9, n and the activation energy Qd, are then determined by a non-linear

least squares fit to equation 4.3.11 cast in terms of stress:

a"* = c9 exp \- d--)] .

The programs used for this fit are named SATCONS and its associated subroutine

FITSAT. They are included in Appendix B.

8. Determination of so:

The value of so for each test, the initial value of the deformation resistance s, is then

determined by dividing the value of a0 determined in step 5 by the corresponding

value of c defined in equation 5.2. Table 5.2 provides the average so values for each

test temperature, determined via the procedure described above.

The material paiamcters for the 2% silicon iron obtained by the method outlined above

are listed in Table 5.3. The value of the activation energy Q = 247.5 kJ/molc is within

the range 237 to 251 kJ/mole for the activation energy for lattice self-diffusion in ferrite
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(see, for example Ashby and Frost [1982]). We note that for a similar silicon steel, Uvira

and Jonas [1968] have previously obtained a value of Q = 333.6 kJ/mole. As discussed

in Chapter 3, however, there is no reason to expect the activation energy associated with

the rate equation to be equal to either that of self-diffusion or that obtained from a fit

to steady state data.

Although there is no physically justified reason for doing so, one may set Qd. equal to

the value of Q determined for the rate equation without introducing a significant amount

of error in the predictive capability of the model. The different values of activation en-

ergy in the two equations reflect a difference in the physical mechanisms governing that

particular aspect of the material response. The model, however, does not appear to be

extremely sensitive to averaging these two values of activation energy. We shall adopt

this simplification. With this simplification the material parameters are those given in

Table 1 of Chapter 1, instead of those in Table 5.3. Note that it is not only the activation

energies that have changed. A change in the activation energies causes a commensurate

change in the other material parameters as well.

5.1 Minimum number of tests

One reasonable question associated with the determination of material parameters is:

What is the minimum number of tests that need be performed to provide sufficient data

to follow the above procedure? Certainly one need not perform as many tests as are

presented in this report.

If we ignore the static recovery function, it is possible to determine all of the constants

from a series of strain rate jump tests like those presented in Section 4.1. The jump seg-

ments provide constant structure data for determining the parameters associated with

the strain rate equation. We may determine the parameters associated with the satura-
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tion state equation if we perform the tests such that the stress reaches a constant value

before the jump and then allow the stress to reach a new steady state after the jump.

Finally, the hardening segments of the curves before and after each jump provides the

parameters for the evolution equation for the internal variable.

It is possible (although certainly not recommended) to determine all of the material

parameters from six (6) strain rate jump tests, divided into two sets of three jump tests

with each set performed at a different temperature. This set of tests represents the

minimum number rcquired to uniquely determine each material parameter, once again

assuming that we have neglected static recovery. Obviously, more tests are required to

provide confidence in the quality of the correlation between material and model, with

appropriate tests spanning the range of strain rates, stresses, and temperatures to be

represented by the model.
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TABLE 5.2

Initial Values of Internal Variable s

Temperature so
Celsius MPa

700 134.2
750 121.1
800 102.7
850 89.6
900 74.6
950 79.1

1000 66.1
1100 58.4
1200 60.1

TABLE 5.3

Material Parameters for 2% Silicon Iron

Material Parameter Value

A 1.26 x 108 sec - 1

Q 247.5 kJ/mole
C5.00
m 0.22793
936.3 MPa

Q d 439.4 kJ/mole
n 0.06272

ho 3498.0 MPa
a 1.5
B 1.08 x 1060 (MPa/sec)

Q, 300.0 ki/mole
p 20.6

I1.5
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Chapter 6

Evaluation and Validation of
Constitutive Model

No consistent criteria have been established for the evaluation of different constitutive

models; most comparisons to date consist of checking whether models represent basic

qualitative aspects of material behavior. Nevertheless, the evaluation and validation of

a model involves several considerations which include:

1. At the very least, the model should represent the physical data upon which the

model is based and from which the material parameters of the model are deter-

mined.

2. Comparison between the predictions from the model and the physical system should

encompass the variable space to be modelled. Given a set of external and internal

variables, the model should represent the physical system thoughout all permuta-

tions of those variables. If the model parameters have been evaluated using data

from a subset of the variable space, validation should include not only that subset

but as much of the variable space as possible. Validation should therefore examine

the predictive capability of the model at reasonable points, including the limits, of

the variable space.
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3. Item one above supposes that all of the relevant variables are measurable. Unfor-

tunately in our case there is no direct correlation of the internal variable s to a

physical quantity. One consideration therefore in our investigation is whether we

may find some some means of correlating s to some physical measurement which

we may then take to represent s.

The tests which follow provide initial validation of the model with consideration of the

above issues.

Five sets of tests follow. First, the model is correlated with the original material tests,

and the correlation is found to be excellent. Second, a load control test is compared with

a prediction from the constitutive model. Data obtained from the load controlled exper-

iments was not used in the evalutation of the material parameters for the model. Third,

strain rates jump tests where the strain rate is increased twice during one test is com-

pared with the predicted model response. Fourth, a strain rate decrement test is used

to confirm the presence of strain softening. Fifth, a specimen is proposed and tested

to investigate both the ability to predict a variation in state subject to an inhomoge-

nous deformation and to investigate different macroscopic measurements which may be

correlated with the internal variable.

6.1 Numerical Integration of Constitutive Equations

The simulations presented in this chapter were produced via one of two integration pro-

cedures, both of which are represented by programs listed in Appendix C. The first

program, ISOINT, uses an IMSL numerical subroutine to evaluate all tests where the

true strain rate is constant or is instantaneously changed. Given a constant true strain

rate and isothermal conditions, integration of the constitutive model reduces to integra-

tion of the evolution equation for the internal variable. Although the coupled system of
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equations is relatively "stiff", the evolution equation for s is not. Therefore the IMSL

subroutine DVERK which employs a fifth order Runge-Kutta algorithm for non-stiff sys-

tems of differential equations was employed. A typical simulation required less than 5

seconds of CPU time on a Data General MV4000.

Simulations of experiments involving other boundary conditions were performed up-

ing the finite element program ABAQUS. The constitutive equations obtained in this

investigation have been incorporated by Anand et al. [1985] as a material model via a

user-material interface in ABAQUS developed by Hibbitt, Karlsson, and Sorensen, Inc.

of Providence, Rhode Island. The coupled differential constitutive equations are nu-

merically very stiff and require special computational schemes for efficient integration in

time. Anand et al. use a semi-implicit time-integration procedure with automatic time

stepping. Using this time-integration procedure in ABAQUS we may evaluate material

response in arbitrary three dimensional loading conditions. A simulation of an isother-

mal, constant true strain rate test using ABAQUS requires approximately 10 minutes of

CPU time as opposed to the 5 seconds required by ISOINT.

6.2 Simulation of Original Experiments

Figures 6.1 through 6.14 present isothermal, constant true strain rate test, recovery test,

and jump test simulations with the original experimental data. All simulations were

produced using ISOINT. The initial values of the internal variable, so, used in these

simulations varied with temperature and are included in Table 5.2. The correlation

between the model and the experimental data is excellent. The only large discrepancy

between the model and the experiments occurs with the 700 degree Celsius, strain rate

jump tests (Figure 6.10). This is not unanticipated since the jump test data was not well

represented by the rate equation at that temperature.
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6.3 Load Boundary Condition Test

Since the independent variables in the major portion of the experiments were strain rate

and temperature, it is important to investigate the predictive capability of the constitu-

tive model when they are dependent variables. Experiments which permit such compar-

ison include load or stress controlled tests and temperature variation tests.

A simple isothermal, load controlled compression experiment was selected where the

load was increased linearly at a rate of 2000 Newtons per second up to 20,000 Newtons,

held for 10 seconds, and then decreased linearly to zero load, illustrated in Figure 6.15.

Displacement was recorded versus time, the true strain and stress calculated, and the

strain rate determined from the strain versus time data. Total accumulated compressive

strain in this test exceeded -0.9. Figure 6.16 illustrates the agreement between the ex-

perimental strain rate and predicted strain rate versus time. The ABAQUS input data

for the simulation is included in Appendix D.

Although the initial loading segment of the test produces the worst agreement between

the model and the data, it is also the most severe test of the model, since the model is

being asked to follow a rate of change in one of the state variables. The constant load

segment, where the applied stress varies more slowly, is duplicated very well by the model.

6.4 Strain Rate Decrement and Double Jump Tests

Figures 6.17 to 6.19 show variations in the strain rate jump tests, where the strain

rate is in the first case increased twice and in the second case decreased once. The

model represents the double jump test data very well, duplicating both hardening and

instantaneous strain rate dependence.

Although the constitutive model predicts the final steady state stress in the strain

rate decrement test, the model predicts a transition to that stress after the strain rate
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decrement which is much different from the actual data. The experimental data changes

abruptly to the new value of steady state stress. This behavior was unexpected. It is

not clear whether this represents true material behavior or is some experimental arti-

fact. Similar data obtained with identical tests on 1100 aluminum [Kim et al., 1986

demonstrated a material response like that predicted by the constitutive model. It is

possible that the abrupt transition is a characteristic of the analog function generator or

the servobydraulic, although preliminary examinations of the hardware failed to detect

any abnormalities. It would be useful to perform the same tests on some other metals

using different hardware to determine whether this result is reproducible.

The steady state stress reached after the strain rate decrement corresponds to the

steady state value for a monotonic test at the final strain rate and temperature. The

sgn(-) function adopted in the evolution equation for the internal variable simulates

strain softening, permitting the model to predict the new saturation state.

6.5 State Gradient Specimen and Testing

One assumption of an internal variable constitutive model is that the value of the internal

variable provides some measure of the mechanical state of the material. The aim of this

particular test was to determine the correlation between the value of the internal variable

predicted by the constitutive model and the variation in deformation resistance within

an inhomogeneously deformed test specimen. A simple conical compression specimen

geometry was selected to produce a gradient of deformation along the vertical axis. Figure

6.20 shows a typical gradient specimen before and after testing.

A typical test sequence consited of comptebsing the specimen at elevated tempera-

ture, immediately quenching, and then machining a series of small cylindrical compression

specimens from the center axis of the deformed specimen. The yield stress obtained from
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a compression test on each compression specimen provides a measure of the deformation

resistance in the region of the gradient specimen from which the compression specimen

was machined. Microhardness tests were also performed along the center section of the

compressed specimen to evaluate whether microhardness could be correlated with the

internal variable.

Since we have evaluated the internal variable s by measuring a 0.2% yield stress, and

since the yield stress is temperature dependent, ideally we would perform these compres-

sion experiments at the original gradient test temperature. This is operationally difficult

to do since the specimen requires a finite amount of time to heat to test temperature,

and recovery processes may erase the variation in deformation-induced microstructure

between specimens. We may perform these yield tests at room temperature, but then

we are faced with the dilemma of relating the room temperature yield stress, where the

high temperature value of c may not be applicable, to the deformation resistance.

A set of initial tests were performed using Fe - 2% Si gradient specimens. The spec-

imens were heated using an induction coil and then cooled with a helium gas quench

immediately after compression. Room temperature yield tests using compression speci-

mens taken from the axis of the quenched specimens produced no discernable variation

in yield stress as a function of axial position in the gradient specimen. It was uncertain

whether the lack of variation was due to inadequate quenhJi idteb, isufflcient giains per

compression specimen cross-section, or the true absence of a variation in state.

We then decided to perform an identical set of tests using 1100 aluminum in place of

the Fe - 2% Si. The use of aluminum permitted large gradient specimens, faster quench

rates, and easier machining and testing of the yield stress compression specimens. A

set of parallel experiments following the methods applied to the Fe - 2% Si have been

performed by Kwon Hee Kim [Kim et al. 1986] to determine the material parameters

for 1100 aluminum for the model developed in this investigation. The aluminum could
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be tested in an air atmosphere using a radiant lamp, clamshell furnace which permitted

heating rates more than two orders of magnitude greater than was possible using the vac-

uum furnace. The radiant furnace also permitted a water quench which also increased

quenching rates. Aluminum thus permitted both the possibility of a more reliable reten-

tion of high temperature microstructure and the potential of performing the yield tests at

elevated temperatures. Figure 6.21 shows the aluminum gradient specimen dimensions.

The gradient specimen compression test was simulated using ABAQUS and the user

material subroutine briefly described in Section 6.1. Appendix D contains the ABAQUS

input file describing the finite element model. Figure 6.22 illustrates the displacements

resulting from a simulation of a test on the 1100 aluminum at 300 degrees Celsius and at

a compression rate of 1 millimeter per second. Figure 6.23 provides a contours of of the

internal variable for this same test. Values provides in the contour table are in terms of

equivalent shear stress and must be multiplied by V3_ to obtain equivalent tensile values.

Tests were performed with the aluminum gradient specimen at both room-temperature

and at 300 degrees Celsius. The room temperature test was performed to provide a large

variation in state to compare with the higher temperature test results. The elevated

temperature specimen reached 300 degrees from room temperature in approximately 500

seconds and was quenched from 300 degrees Celsius to room temperature in less than 10

seconds. After compression, both specimens were sectioned along their axis of symmetry.

Figures 6.24 and 6.25 show the variation in -nicrohardness along the longitudinal axis of

both specimens. Each data point in the figures represents the average of 8 to 10 readings

at each position. Although some variation is evident in the room temperature specimen,

there was no detectable variation in microhardness in the quenched specimen.

Compression specimens (approximately 7.0 mm in diameter by 7.0 mm in length) were

machined coaxial with the axis of the compressed gradient specimens as indicated in Fig-

ures 6.26 and 6.27. These figures indicate the variation in yield stress measured at room
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temperature from the compression specimens obtained from both the room temperature

and 300 degree Celsius gradient specimens. Figure 6.28 shows the actual stress-strain

data for the five compression specimens machined from the 300 degree gradient specimen.

Figure 6.27 also shows the variation in the value of the internal variable s predicted by

the ABAQUS simulation, where the values of s have been multiplied by a constant (.830)

such that the model prediction and the measured yield stress coincide for the rightmost

data point. The model prediction appears to represent qualitatively the variation in yield

stress along the length of the specimen very well, duplicating not only the magnitude of

variation in stress but also the axial position of that variation.

It should be noted that the constitutive model cannot be extrapolated to room tem-

perature given material constants which were determined from tests at higher homologous

temperatures. The constitutive model does not predict the room temperature yield stress

variation from the quenched gradient specimen, a calculation which may be done by mul-

tiplying the predicted value of s by the proportionality constant c obtained by inserting

room temperature parameters into equation 5.2. Such a calculation overestimates the

actual yield stress by approximately a factor of 2.

Nevertheless, the predicted variation in the internal variable appears to indicate the

relative variation in plastic deformation resistance very well.
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Figure 6.2 Correlation of constitutive model with isothermal, constant tru
strain rate tests on Fe -2% Si at 900 degrees Celsius.
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Figure 6.3 Correlation of constitutive model with isothermal, constant true
strain rate tests on Fe - 2% Si at 1000 degrees Celsius.
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Figure 6.4 Correlation of constitutive model with isothermal, constant
true strain rate tests on Fe - 27 Si at 1100 degrees Celsius.
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Figure 6.8 Correlation of constitutive model with isothermal, constant true
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Figure 6.11 Correlation of constitutive model with strain rate jump tests on
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Figure 6.14b Simulation of load-unload-hold-reload tests on Fe - 2% Si.
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Figure 6.16 Predicted and actual strain rates measured during load boundary
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Figure 6.20 State gradient specimen before and after
testing.
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Figure 6.21 Dimensions of 1100 Al state gradient specimen.
(All dimensions in inches.)
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Figure 6.24 Variation in microhardness along central axis of 1100
aluminum gradient specimen. Specimen compressed at
room temperature.
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Figure 6.25 Variation in microhardness along central axis of 1100
aluminum gradient specimen, Specimen tested at 300
degrees Celsius and quenched.
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Figure 6.26 Variation in room temperature yield stress along axis of
1100 aluminum gradient specimen. Specimen compressed at
room temperature.
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Figure 6.27 Variation in room temperature yield stress along axis of
1100 aluminum gradient specimen. Specimen compressed at
300 degrees Celsius and then quenched.
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Chapter 7

Concluding Remarks

The success of this constitutive model in representing large rate-dependent metal de-

formations at high temperatures, indicates that a single scalar internal variable model

may be adequate for analyzing hot working operations. Such a result is of significant

practical importance. Depending on the forms of the material functions, a single scalar

model is most likely easier to fit to test data than multiple internal variable models. A

single scalar model also provides a potential reduction in computational requirements

both by simplifying the updating of material states from a tightly coupled, stiff set of

nonlinear differential equations and by reducing the number of variable values stored at

each integration point in a large finite element model.

The constitutive model developed in this report has been recently used both to model

other metals and to simulate hot working processes. The model has been applied to a

face-centered cubic metal, 1100 aluminum [Kim, et al., 1986]. The correlation between the

model and the 1100 aluminum data appears to be better than the correlations presented

in this report for the iron - 2% silicon alloy. This model employing 1100 aluminum

material parameters has been used in ABAQUS finite element simulations of closed die

forging operations Lush, Weber and Anand [1987]. The finite element predictions of load

histories and material flow agrees well with actual forging tests.

A limitation of this model derives from the fact that anisotropic material behavior

143



has been ignored, with the consequence that errors may develop with large deformations.

Small scale anisotropy associated with reversed loading, Bauchinger-type phenomena was

reasonably assumed to saturate after a few percent strain, and large scale effects due to

the development of texture were ignored primarily because of the current lack of simple

techniques for modelling the evolution of crystalline orientation. The fact that the as-

sumption of isotropy was enforced in this investigation through the use of monotonic tests

on identically-oriented specimens does not mean however that the texture development

in the Fe - 2% Si alloy is insignificant. It would be reasonable in further investigations to

investigate the accuracy of the constitutive model as a function of variation of material

orientation after large deformations.

The model presented here has been developed for single phase metals under large

deformations where the dominant deformation processes are assumed to be thermally

activated. Materials which may possess a strong athermal component of deformation

resistance, such as precipitation or dispersion strengthened metals therefore may not be

well represented.

Several conclusions may be drawn about constitutive models for hot working given

the research presented herein:

1. The dependence of strain rate upon stress at a given constant structure is not well

represented by a power law, much less by that power law exponent which correlates

the steady state stress to the steady state strain rate. Furthermore, given a single

internal variable model for creep, where the dependence of strain rate upon stress

and state is expressed in the form:

=f(o) , 7.1

the exponent n should not be the steady state stress exponent. If we expect the

steady state value of the internal variable s to increase with stress, n must be
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greater than the values of 3 to 5 normally associated with creep.

2. If power law breakdown is the result of a change in deformation mechanism, that

mechanism is associated with the constant structure kinetics and not with the evo-

lution of the microstructure. Power law breakdown therefore should be represented

in the deformation rate equation.

3. It may be possible to neglect static recovery, i.e., recovery in the absence of load,

in simulating many hot working processes. The static recovery rate measured in

this investigation did not affect the material response over the range of strain

rates and temperatures tested. This restriction applies only to recovery processes;

recrystallization if present will most likely effect the material response.

Internal variable models which postulate separate rate equations for deformation and

microstructure evolution requires material data which is generally not available. The

fundamental consideration is that one should perform experiments to characterize each

material function unambiguously. Constant structure tests such as the jump tests de-

scribed in this report are essential if one wishes to evaluate or fit the deformation equation

to data which represent only deformation kinetics. Similarly, tests designed such that

deformation kinetics may either be neglected, as in the load-unload-hold-reload tests, or

compensated for in some phenomenological way (e.g. using the constant c in this model)

provide data representative of the evolution of structure.

Such testing addresses important questions concerning appropriate material func-

tions. One obvious case in point is the characterization of deformation rate equations like

o d1. 1. Sri rte, stress, and t.e,,mpcrature jumnp tcsts provide
U,,ose discussed -I Section a n ra J,.:

the capability of directly evaluating deformation kinetics. Such techniques are certainly

applicable to fundamental investigations on single crystals as well as polycrystalline en-

gineering alloys. It is likely that such experimentation will become more common as
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internal variable formulations gain acceptance. Such experimentation in conjunction

with increased understanding of the processes controlling the evolution of structure may

provide, in time, more consensus on the form of constitutive models for high temperature

deformation.
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Data Acquisition and Reduction Programs
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20 '*
0 1* SAMPL2.BAS - DATA ACQUISITION USING CHANNELS 0 AND 1

40 '* Stuart Brown Rev. 1.00 2-28-86

60)

70 --------- STEP 1STEP -------------------------------------------
80 'Load DASH16.BIN by loading at 92K (Hex 1700) outside basic workspace
90 CLEAR, 49152!
100 DEF SEG = 0
110 SG = 256 * PEEK(&H511) + PEEK(&H510)
120 SG = SG + 49152!/16

1W0 DEF SEG = SG
140 BLOAD "DASH16.BIN", 0 'Load it
150 DIM DIO(),A%(20001) 'Initialize data arrays
160 DIO%(O) = &H30( 'DASH-16 board base address
170 DIO%(1) = 2 'Selected interrupt level for DASH-16
180 DIO%(2) = 3 'Selected DMA level for DASH-16
190 DASH16 = 0 'Declare & initialize other CALL parameters
200 FLAG% = 0
210 MD% = 0 'Select Mode C) - initialize driver
220 CALL DASH16 (MD%. DIO%(O),FLAG%) 'do it
230 IF FLAGX>0 THEN FRINT "INITIALIZATION ERROR":STOP 'any error?
240 '
250 ----------------- STEP 2
260 '
270 'Set up multiple:er scanning limits for channels 0 to 1
280 1
290 MD%=I 'Mode I - set scan limits
-00 DIO%(O)=1
310 DIO%(1)=2
320 CALL DASH16 (MD%, DIO%(O).FLAG%)
330 IF FLAG%,>O THEN PRINT "Error in scan limits # ";FLAG% : STOP
340 1
50 ---------------- STEP 3- -----------------------------------------
360 'Prompt for sampling rate
370 1
380 INPUT "Enter sampling rate in Hert: (up to 1000, even number) : ".SAMRT%
390 INPUT "Enter number of desired samples (maximum 10,000) : ".NSAM%
400 SAMDUR = NSAM%/SAMRT%
410 PRINT
420 PRINT "Duration of sampling period is: ",SAMDUR," seconds."
430 PRINT
440 MD% = 17

450 DIO%(O) = 2 : DIO%(1) = 250000!/SAMRT%
460 CALL DASH16 (MD%, DIO%(O),FLAG%)
470 IF FLAG%<>O THEN PRINT"Error in scan rate set up # ":FLAG% : STOP
480 1
490 --------- STEP 4STEP -------------------------------------------
500 PRINT "Press any key to start data collection"
510 B$ = INKEY$
520 IF B$="" THEN 510
530 'Do NSAM% conversions into array A%(*) using mode 4
540 DIO%(O) = NSAM%*2 'Number of conversions
550 DIO%(1) = VARPTR(A%(O)) 'Array locator
560 DIO%(2) = 1 'Trigger source - programmable timer
570 MD%=4
580 CALL DASH16 (MD%, DIO%(O).FLAG%)
590 IF FLAG%,:>0 THEN PRINT "Error in mode 4 # ";FLAG% : STOP
600 PRINT "Data acquisition done"
610 PRINT "Hit any key to continue"
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620 9$ = INKEY$
670 IF B$="" THEN 620
640 
65 ---------------- STEP 5 -----------------------------------------
660 'Review even 100th data point voltage and store in integer form

670 "
680 FOR I% =0 TO NSAM/.*2 STEP 200
690 Al = A% (1%)/204.7 : A2 = A%(1%+I)/2C)4.7
700 J%=1%/2

710 PRINT J%.Al,A2
720 NEXT I%
730 INPUT "Input first data point to be saved : ",FSTPT%

740 INPUT "Input last data point to be saved : °.LSTPT%
750 INPUT "Input name of file to hold data : ",INFILE$

760 OPEN INFILE$ FOR OUTPUT AS #2
770 FOR J% = FSTPT% TO LSTPT%
78C 17% = J% * 2
79:) PRINT #2.J%:A%(I%):A%(I%+I)

80:) NEXT J%
810 CLOSE #2

820 END
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Data Reduction of Raw Load/Deflection Data

The following procedure used to obtain smooth true stress versus true strain data,
and hardening data from load/deflection data resulting from uniaxial compression or
tension tests. It uses four programs, TRUECON, JUMPPT, POLYS, and HARDEN, to
generate a generic data file which may then serve as a relatively "clean" set of uniaxial
test data. The purpose of this procedure is to provide data cleansed of any test machine
or data acquisition idiosyncrasies, providing a standard format available for subsequent
analysis.

The procedure described herein assumes the following format for the raw data ob-
tained from constant true strain rate tests:

First row: Number of data points(integer)
Test ID (integer)
Temperature in Celsius
Strain rate

Subsequent rows: Data arranged in columns
Column Contents
1 Sample number
2 Displacement in A/D integer units
3 Load in A/D integer units

Entries on the same row are separated by commas or spaces. The programs treat the data
as free-formatted. The programs are structured such that the output of a particularly
program serves as the input of the next program in sequence. Each program produces an
output file which consists of the input file plus additional columns of data which result
from the analysis of that program. A copy of each relevant program is attached to the
end of this appendix.
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A.1 Converting to True Stress/True Strain Data: TRUECON

The program TRUECON uses the raw data file to produce a file with the follow
structure in free-formatted form.

First row: Same as raw data file
Subsequent rows: Data arranged in columns

Column Contents
1 Sample number
2 Load in Newtons
3 Displacement in mm
4 True stress in MPa
5 True strain

TRUECON requests the following input:

1. Specimen area in square millimeters.

2. Temperature in degrees Celsius.

3. Coefficient of thermal expansion.

4. Compliance of test machine in kiloNewtons/mm.

5. Starting actuator displacement (zero load point).

6. File name containing input data.

7. File name to contain output data.

A.2 Smoothing of True Stress/Strain Data: (JUMPPT and POLYS)

Programs JUMPPT and POLYS serve to smooth the true stress data produced by
program TRUECON. JUMPPT smoothes the strain data and calculates the strain rate.
POLYS smoothes the stress data. Both strain and stress are smoothed versus sample
number (which may be considered equivalent to time). The programs smooth by fitting
a cubic polynomial to segments of the stress/strain data, and uses the value predicted
by th, :ubic at the center of the segment to be the smoothed value at that point. The
segment is called a "bin" and is moved point by point along the set of data, producing
a smoothed value at the center point of the bin. The user specifies 1/2 the number of
data points in the bin. The bin size should never be less than 10 and frequently may
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have to be larger to obtain adequate smoothing. The 1/2 bin size is therefore always 5
or greater.

JUMPPT, POLYS and the next program HARDEN use double precision IMSL sub-
routines to perform their relative tasks. The correct IMSL library obviously must then
be specified when linking either of these two programs.

JUMPPT requests the following input:

1. Name of input data file (TRUECON output).

2. First sample number in first range of data where strain rate is to be determined.

3. Last sample number is first range of data where strain rate is to be determined.

4. First sample number in second range of data where strain rate is to be determined.

5. Last sample number in second range of data where strain rate is to be determined.
(Two ranges are specified so that strain rates before and after a strain rate jump
may be determined if desired.)

6. Data samplin, interval in seconds.

7. Name of output data file.

8. First sample number in range for strain smoothing.

9. Last sample number in range for strain smoothing.

10. 1/2 bin size for smoothing.

JUMPPT produces the following output file:

First row: Same as raw data file
Subsequent rows: Data arranged in columns

Column Contents
1 Sample number
2 Load in Newtons
3 Displacement in mm
4 True stress in MPa
5 True strain (smoothed)
6-8 Null data
9 Strain rate
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POLYS requests the following input:

1. Name of input file (JUMPPT output).

2. 1/2 smoothing bin size.

3. First sample number in range for stress smoothing.

4. Last sample number in range for stress smoothing.

5. Name of output file.

POLYS produces the following output file:

First row: Same as raw data file
Subsequent rows: Data arranged in columns

Column Contents
1 Sample number
2 Load in Newtons
3 Displacement in mm
4 True stress in MPa
5 True strain (smoothed)
6 True stress (smoothed)
7-8 Null
9 Strain rate

The user should plot the smoothed and unsmoothed data after each smoothing operation
to confirm that the smoothing does not distort the actual data.

A.3 Plastic Hardening Determination: (HARDEN)

The next step required is to determine the rate of hardening, i.e., the rate of change
of stress with strain, for each constant true strain rate test. This is accomplished with
program HARDEN. HARDEN produces a new data file of the original data from POLYS
with two new columns:

1. Column 7: Plastic hardening

2. Column 8: Plastic strain
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HARDEN requests the following input:

1. File name of input data (POLYS output).

2. First sample in range of data for hardening calculation.

3. Last sample in range of data for hardening calculation.

4. 1/2 smoothing bin size.

5. File name to contain output data.

6. Young's modulus in GPA at test temperature. (Used to calculate plastic strain.

HARDEN calculates the hardening, or slope of the stress versus plastic strain curve,
by selecting a bin of data (like POLYS) fitting a cubic polynomial to the data in the
bin, then using the derivative of the polynomial at the center point of the bin to be the
hardening rate at that point. The bin moves through the data, sequentially fitting the
data to the polynomial and taking the derivative at the center point. The size of the
bin, in data points, is specified by the user each time HARDEN is run. A good range
seems to be between 5 and 10, although this depends on the smoothness of the data
being analyzed. The bin size may have to be increased if there are many data points
> 100 which are closely packed or if the data is particularly noisy.

To summarize, HARDEN produces the following output file:

First row: Same as raw data file
Subsequent rows: Data arranged in columns

Column Contents
1 Sample number
2 Load in Newtons
3 Displacement in mm
4 True stress in MPa
5 True strain (smoothed)
6 True stress (smoothed)
7 Plastic strain
8 Plastic hardening
9 Strain rate

Once again, it is a good idea to plot the hardening (column 8) versus stress to confirm
that HARDEN produced reasonable results. It is also a good idea to try several different
bin sizes to examinc the variation in predicted hardening.
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C
C TRUEcoN
C
C CONVERTS LOAD VERSUS DISPLACEMENT DATA FILES
C INTO TRUE STRESS VERSUS TRUE STRAIN IDTA FILES.
C
C DATA IS READ FRCA FORTRAN DATA FILE SPECIFIED BY
C ASSIGN FOR025 (INFILE] STATEMENT. nATA IS OUrPUT
C TO IOR026 (OUTFILE]. THE INPUT FILE
C FORMAT IS:
C NU.M NIIBER OF ITA POINTS
C ARRAY SAMPLE,LOAD,DI SPLACEMENT
C
C VARIABLES:
C
C AREA SPECIMEN AREA IN M?*2
C TRMP TEST TEMPERAIURE IN CELSIUS
C ALPHA WOEF OF IHERM4L EXPANSION
C C(MP TEST MACHINE ClThPLIANCE
C DISP STARTING DISPLACEMENT
C LI INITIAL SPECIMEN LENGTH
C LS SPECIMEN LENGTH ADJUSTED
C FOR TEMPERAIURE
C LOADCF CONVERSION FACTOR FOR LOAD,
C (NEWTONS/VOLT)
C DISPCF CODNVERSION FACTOR FOR DISPLACE-
C MENT (MAIVOLT)
C NTESTID IDENTIFICATION NVIBER FOR
C TEST (INI'EGER)
C TEMPT TEST TEMAPERA'7URE IN CELSIUS
C RATE TEST STRAIN RATE
C NX NLWBER OF DATA POINTS
C INFILE INPUT FILE NAME
C OUfFILE OUTPUT FILE NAME
C ARRAY(I,J) DATA FILE
C SIZE TEMPERATURE SCALING FACTOR
C FOR SPECIMEN DIMENSIONS
C
C STUART BRON 1-3-84
C
C INITIALIZE IkTA
C

REAL ARRAY2(2000,5),ARRAY(1,3)
C

REAL AREAITEP,ALPHA,C(MP,DISP,LI ,LS,TWT,RATE,SIZE,LOADCF
REAL DISPCF
CHARACER'*20 INFILE,OUTFILE

C
C READ DATA AND CONVERT TO TRUE STRESS AND STRAIN
C
4 FORT(A20)
5 FORMNT (F10.5)

PRINT ',"INPUT SPECIMEN AREA IN MAW
READ (:.5) AREA
PRINT ',"INPUT TEMP IN DEGREES CELSIUS
READ (:,5) TEM
PRINT :,"INPTF (DEF 'HIEAL EXPANSION S 10"6PP:.An ( AC5) AT WAA

PRINT *,"IN'Pi O1FPLIANCE IN KNAM
READ (*,5) (liM
PRINT ,"INPUT STARTING DISPLACEMENT
READ (8,5) DISP
PRINT *,"INPT STARTING LENGTH IN MA
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READ (*,5) LI
PRINT *,"INPUT RAW DATA FILE NAME
READ (*.4) INFILE
PRINT ::,"INPUT~ LOAD CO)NVERS ION FACTOlR (NEWIOS/WOLT)
READ ( 5) ILO4DCF
PRINT *,"INPT DISP CON~VERSION FACTOR (NM/dVOLT)
READ (*.S) DISPCF
PRINT *,"INPUT OUT~PUT FILE NAME
READ (*,4) (urFiLE
OPEN (25,FILE-INFILE,STATUS-'OLD'
1 ,RECH&MI'DS I)
READ (25,') NT2fTESTID,Te4PT, RATE
DOI 10 1 - 1,NtM

C
READ ('25,*) ARRAY(1,l),ARRAYC1,3),ARRAY(1,2)
SIZE - 1. + (THE4P-20.) * ALPHA * 1.E-06
LS - LI * SIZE
SS - ARRAY(1,3)
ARRAY(1,3) - DISPCF * ARRAYC1,2) / 204.7
ARRAY(1,2) - LQADCF *SS / 204.7
EG- (ARRAY(1,3) - ARRAYC1,2)/(CCMvP*1000) - DISP)/LS

ARRAY2(I,5) - -AI.OG(1.+ ENO)
ARRAY2CI,4) - -ARRAY(1,2) * (1. + ENG)/(AR.EA*SIZE**2)
ARRAY2CI,1) - ARRAYC1,1)
ARRAkY2CI,3) -ARRAY(1,3)
ARRAY2CI,2) - ARRAY(l,2)

C
10 CDNTrI NUE
C
C STORE TRUE STRESS AND STRAIN DATA
C

OPEN C26,FiLE-(XflFiLE,STAus-'NEw',
1 RECfM-DS')
'%ITE (26,') NUA, NTESTID.TBA4PT, RATE
DOI 20 I-i ,NtM

C
VRITE (26,') CARRAY2CI,J),J-1,5)

C
20 GJNTINUE

CLOSE (uNIT-25)
CLOSE (uNIT-26)

END
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C
C J~vIPPT
C
C STU BRW 2-16-86
C
C DETERMINES R)OOIHED STRAIN AND INMESECrI0N STRAIN
C
C VARIABLES
C
C ARRAYr(1200,9)
C 1 SAMPLE NUVIBER
C 2 LOAD
C 3 DISPLACEM'fl
C 4 TRUE STRESS
C 5 TRUE STRAIN
C 6 SNUXYHED STRESS
C 7 PLASTIC STRAIN
C 8 HARDENING
C 9 STRAIN RATE
C

DOUJBLE PRECISION LPT1 ,LPT2 ,UP'T1,UPT2 ,ARRAY'( 1200,9) ,SAMRATE
DOUJBLE PRECISION ARRAY1C1200,2),ARRAY2(1200,2),J~vIPPT
DOUJBLE PRECISION ALBAP(3),DES(5),ANOVA(14),STAT(9),PRED(1,7)
Q.{AD'ER20 INFILE ,CITFILE ,ANSMR

C
C RODGMflING VARIABLES
C

DOUJBLE PRECISION SP'rl,SPIT2,WRK(2,1200),X(100),Y(100),RSQP(200)
DOUJBLE PRECISION T(16),C6),S(6).A(3),B(3),Z(4)
REAL RATE(1200) ,STRAIN(1200) ,STRAINLC1200)

5 FORM&T (I5A)
C

PRINT' *,"PROGRAM JUAPPT"
PRINT' ,"EMME NME OF INPUT' DikTA FILE
READ (s,5) INFILE
PRINT' *,"STRAIN RATE DETERMINATION SECrION
PRINT *,"INPJr FIRST POINT FOR LOMME RANG3E
READ (',') LPT1
PRINT' *,"INPtfl SECOND POINT' FOR L(OER RANGE

PRINT *,"INPUr FIRST POINT FOR UPPER RANGE
READ C,*) UPTI
PRINT' 8 INPU' SECOND POINT FOR UPPER RANGE
READ~ (:,') UPT2
PRINT *,"INPJI flkTA SAMPLING INTEVAL (SEC)
READ C',*) SAIRATE

C
C READ DlATA
C

NPT11 - 0
NPT 2 - 0
OPEN(24,FILE-INFILE,RECFM..'DS')
OPEN(12,FILE-'ERROR.LS')
READ (24,*) NPT
DO 10 I - 1, NPT

C
READ(24,s) (ARRAYr(,J),j-1,5)
ARRAYrCi,6) - 0.
ARRAYT(,l) - 0.
ARRAYF(I,8) - o.
ARRAYr(,9) - o.
IF ((ARRAyTCi,l).GE.LPT1).AND.(ARRAYr(i,l).LE.LPr2)) TEEN

C
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Np-ri - NPT1I + 1
ARRAYi(NPTi,i) - ARRAyT(i,l)
ARRAY1(NPTI,2) - ARRAyr(i,5)

C ELSE IF ((ARRAYr(i,l).GE.Ur'r1).AND.(ARRAYr(i,1).LE.UPT2))

1 'tHEN
NP'T2 - NPT2 + 1
ARRAY2(NPT2,1) - ARRAYr(i,1)
ARRAY2(NPT2,2) - ARRAyr(i,5)

C
END IF

C
10 CO3NTINUE

CLOSE(24)
C
C PERFO)RM LINEAR REGRESSION
C

IX - 1200
MW - 0
IPRED - 0
ALBAP(1) - .05
ALBAP(2) - .05
IP - 1
NN - 0

C
CALL RLONE (ARRAY1 , I X. NPT1 ,I"D, I PREDALBAP, DES, ANOVA, STAT,
1 PRED,IP,NN,IER)
PRINT *,"REGRESSION (X)EF FOR LOPIM RANGE - ",(STAT(1)/&AMRATE)
Al -STAT(1)

Il STAT(S)
PRINT *,"IER (ERROR PARAmETER) - ",IER

C
IX - 1200
INM - 0
IPRED - 0
ALBAPC1) - .05
ALBAP(2) - .05
IP - 1
NN - 0
CALL RLONE(ARRAY2, IX,NPT2, INM, I PREDALBAP, DES, ANOVA, STAT,

2 PRED,IPINN,IER)
PRINT *,"REGRESSION (X)EF FOR UPPER RANGE -",(STAT(W)/ARATE)

A2 - STAT(1)
B2 - STAT(S)
PRINT *,"IE (ERROR PARAMETE) -"IER

C
C CALCULATE INTERSECTION
C
C
C BEGIN R)WING?~ SECTION
C

PRINT '

PRINT ,"SMJOTHf STRAIN AND DETEMINE STRAIN RATE? (Y OR N)"
READ 0',5) ANSWER
IF (ANSWER.EQ.'N') GO0fTO 500
PRINT ,ENTER NAME OF OUTFPUT F ILE
READ (::5") WI'FILE
OPEN(25,FiLE-WrFI.E,RECFM4- Ds 1)

PR II LJ rL 1.~yL. M lAUIL)1J

READ (,) SPT1
PRINT ',ENTER FINAL SAMPLE NUM1BER "

READ (s,'") SPT2
PRINT *,"ENTER 1/2 BIN SIZE

166



READ (*,*) NBIN
C
C SELECT' DA~TA ARRAY
C

NBEG - NPT
NSAM - 0
DO 15 1 - 1,NPT

C IF ((ARRAYT(I ,1).GE.SPT1).AND.(ARRAYr(I,l).LE.SPT2)) THEN
C

NSAM - NSAM + 1
ARRAY2 (NSAM, 1) - ARRAYr(, 1)
ARRAY2(NSAM,2) - ARRAYr(Is)

C
NBEG - MIN(NBEG,I)
END IF

15 (X)NTINUE
C SET UP W)ORK ARRAY
C

DO 20 1 - 1,NBIN
C

wRm(1, i) - ARRAyT(NBEG-NBIN+I-1,1)
VWORK(2,I) - ARRAYr(NBEG-NBIN+I-1,5)
wORKC2 ,NBIN+NSAM&I) - 2*ARRAY2CNSAM,2) -ARRAY2CNSAM-1I, 2)
W)ORK( 1,NBIN+NSAM-I) - 2*ARRAY2(NSAM,1) -ARRAY2(NSAM-I, 1)

20 ONTINUE
C

DO 30 1 - 1,NSAM
C

WQRK(1,NBIN+I) -ARRAY2(I,1)
V.DRKC2,NBIN+I) - ARRAY2(I,2)

30 CONTINUE
OPENC27,FILE-'ZWI" ,RECFM4-'DS')
DO 33 1 - 1,NSA&2*NBIN

MITE(27,*) WORK(1,I),vWRK(2,I)
33 UJNTINUE
C
C CUTRVE FIT
C

RSQ - 99.99D0
MD- 3

N - 2*NBIN + 1
DO 50 I - 1,NSAM
M~ITE(27, *) I

C
DD 40 J - 1,N

C

Y(3 - VJDR(2,I+J-1)
'V RITE(27,*) XC3),Y(J)

40 CIDNTINUE
C

DO 45 K - 1.6
C

CCK) - 0.0
45 ONTINUE
C

CALL RLRXI(X,Y,N,RSQ,M), ID,P,C,S ,A,B,JIER)
CALL RLDOMCC-, IDA,B,T)
STRAINCI) - SNGL(C(1) + C(2)*ARRAY2(I,l) +

1 C(3)*ARRAY2CI,1)2 + CC4)*ARRAY2(I.1)**3)
RATECI) - SNOL(C(2) + 2*CC3)*ARRAY2CI.1) +

1 3*CC4)ARRAY2CI ,1)**2)/SANRATE)
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STRAINL(I)- SNGL(STAT(1)*ARRAY2(I,1)+STAT(5))
50 cONTINUE

CLOSE(27)
C(XPURSUT
C OTU EUT
C

V RIT(25,*) NPT
DO~ 60 1- 1,NP T

c IF((ARRAY(I,1).LT.SPT1).oR.(ARRAy(.,1).GT.SPT2)) ThEN

NWAITE(25,*) (ARRAXTCi,J),j-i,9)
C

ELSE
C

VRIE(25,*) (ARRAyr(I,J),J-1,4),STRAIN(I-NBEG+1),
1 sTRAiNL(i-NBEG+1),(ARRAyr(,),J-7,8),RATE(I-NBEQ+1)
END IF

C
C
60 CONTINUE

CLOSEC 25)
500 STOP

END
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C POLYS
C
C DATA SMX1lTHING PROGRAM FOR STRESS/STRAIN CJRVES
C
C STUART BRON 5-29-85/MX) MEHRDIAD HAGHI 7-16-85
C
C VARIABLES
C
C NX NUblBER OF DATA POINTS
C ADATA( I ,NX) ORIGINAL DATA ARRAY
C RON 1 SAMPLE NUIBER
C RON 2 LOAD
C ROW 3 DISPLACEMENT
C ROV 4 TRUE STRESS
C RCW 5 TRUE STRAIN
C ROW 6 SMOOHED STRESS
C ROC 7 PLASTIC STRAIN
C ROW 8 HARDENING
C ROW 9 STRAIN RATE
C NPT 1/2 A)OMlIING FRAME SIZE
C WJIUK(2,NX) W)RK ARRAY FOR SM3OrHING
C X(I) X AXIS WRK ARRAY
C Y( I) SMOTHD VARIABLE '%RK ARRAY
C P(I) )RK VECIDR
C C(6) REGRESSION COEFFICIENTS
C S(6) SCALING COEFFICIENTS
C A(3) "
C B(3)
C
C
C I/O ASSIGMZv1ENTS
C
C FOR025 INPUT FILE, PER AIATA(I,NX) ABOVE
C
C FOR026 OUTPUT FILE, PER AIATA(I,NX) ABOVE
C

PROGRAM POLYS
C
C INITIALIZE DATA
C

REAL ADATA(9,2000),WRK(2,2000),SSTRESS(2000),ZERO
CHARAC"IER*20 INFILE,UI"FILE
DOUBLE PRECISION P(100),T(16),X(50),Y(50),C(6),S(6),A(3),B(3),
1 Z(4),RSQ
RSQ - 99.99D0
MD- 2

5 FORMAT (1SA)
C
C READ DATA
C

PRINT *"V"WAT IS INPUT FILENAME?
READ (*.5) INFILE
PRINT *,"INPUT 1/2 BIN SIZE
READ (*,*) NFl
PRINT * -WMAT IS INITIAL SAMPLE NUMBER?
READ (*,*) NSAM1
PRINT ',"WVAT IS FINAL SAMPLE NUMBER? "
READ (9,*) NSAM2
PRINT ',P'WIAT iS OTiPiJT FiL AME?
READ (*,5) CJIIFILE
OPEN (12,FILE-"ERROR.LS")
OPEN (25,FILE-INFILE,RECFh-'DS')
READ (25,*) NX
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NSAM - 0
DD~ 10 I - 1.X

.READ C25,*) (AEATA(JI),J-1,9)
IF ((ADATA(l,I).GE.NSAM1).AND.(AnkTA(1 II).LE.NSAM2)) MhEN

NSAM - NSM + 1
END IF

IF (ADATA(1,I).EQ.NSAM1) NBEG-I
C

C
10 CONTINUE

CLOSE (UNIT-25)
C
C
C SETUJP WORK ARRAY
C

NEND - NBEG + NSAM - 1
DO 20 1 " 1,NPT

C
WkORK( , I) - 2*ADATA(1 ,NBEG)-ADATA(1 ,NBEG+NPT-I+1)
VAORK(2, I) - 2'AnATA(4,NBEr3)-ADATA(4,NBEG+NPT-I+1)
WlARK(2 ,NSAM+-NT+ I) - 2*ADATA(4 .NED) -AflkTA(4 ,NEND- 1)
WJIUC( 1,NSAM4+NP'T+I) - 2*A1&TA( I NEND) -ADATA( 1,NEN- I)

20 CONTINUE
C

£0 30 1 - 1,NSAM
C

WJ.K( 1 ,I+NPT) - AlATA(I, I +NBEGY- 1
w DK(2, I+NPT) - ADA~TA(4, I+NBBG -I

30 CONTINUE
C
C
C CURVE F IT

N - 2*NPT + 1
£0 50 1 - 1,NSAM

C
£0 40 J1 1, 2*NPT+l

X(J) -DBLE(VJkM(1,I+J-1))

Y(JM DBLE(WJRK(2,I+3-1))
4C CONTINUE
C

CALL RLIUTH(X,YIN,RSQMD,ID,P,CS.ABIER)
CALL RLDOPM~(C, IDA,B, T)
SSTRESS(I - SN3L(CC)+C(2)*ADATA(1,I+NBEG-1)

1 +C(3)*AlATA(1,I+NBBG-1)8*2)
50 CONTINUE
C
C
C OTPUT RESULTS
C

OPEN (26,FILE-cL~rFILE)

= ZERO-O0.0
DO 60 I - 1,NX

C

C 
I

C
ELSE

170



C
'WRITE C26,*) (AflATA(3 ,I),J-1,5),SSTRESS(I-NBEG+1),

1 (ADATA(K,I),K-7,9)
END IF

C
60 OJNrINUE
C

CLOSE (26)
STOP
END
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C HARDEN
C
C HARDENING PROGRAM FOR JUMP TESTS
C
C STUART BROW 7-18-86
C
C VARIABLES
C
C NX NUMBER OF DATA POINTS
C ADATA( I ,NX) ORIGINAL DATA ARRAY
C ROW 1 SAMPLE NIMBER
C ROW 2 LOAD
C ROW 3 DISPLACEMENT
C ROW 4 STRESS
C ROW 5 STRAIN
C ROW 6 SMXOCYED STRESS
C ROW 7 PLASTIC STRAIN
C RON 8 HARDENING
C RCW 9 STRAIN RATE
C Nfr 1/2 M IING FRAME SIZE
C WRK(2,NX) W)RK ARRAY FOR S)OTHIl
C X(I) X AXIS WRK ARRAY
C Y( I) SMOOXED VARIABLE W)RK ARRAY
C P() VWORK VECTOR
C C(6) REGRESSION COEFFICIENTS
C s(6) SCALING COEFFICIENTS
C A(3) "

C B(3) "

C
C
C I/O ASSIGNAENTS
C
C FOR025 INPUT FILE, PER ADATA(I,NX) ABOVE
C
C FOR026 OUTPt FILE, PER ALATA(I,NX) ABOVE
C

PROGRAM POLYS
C
C INITIALIZE DATA
C

REAL AD.TA(9,2000),VORK(2,2000),HARDEN(2000),ZERO,E
CHARACrER*20 INFILE,OUrFILE
DOUBLE PRECISION P(100),T(16),X(50).Y(S0),C(6),S(6),A(3),B(3),
1 Z(4),RSQ
RSQ - 99.99D0
M- 2

5 FOMAT (I5A)
C
C READ DATA

PRINT '"v'"AT IS INPUT FILENAME?
READ (*,5) INFILE
PRINT * "HAT IS INITIAL SAMPLE NUMBER?
READ (",*) NSAM1
PRINT ',"'WAT IS FINAL SAMPLE NUMBER?
READ (*,") NSAW
PRINT *,"ENTER 1/2 BIN SIZE
READ ;;) NPT
PRINT ,-"kIAT IS OUrPUT FILENAME?
READ (',5) CXJTFILE
PRINT *,"ENTER YOUNG'S MXJLUS IN GPA
READ (, *) E
OPEN (12,FILE-"ERROR.LS")
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OPEN (26,FILE-'ZCLur',RECFM-'Ds')
OPEN (25,FILE-INFILE,RBCFMf-'DS')
READ (25,*) NX
NSAM - 0
DO 10 I - l,NX

C
RE.4D C25,*) (ADATA(J,I),J-1,9)
AIMTA(7I) - AlATA(5,I) - ADATA(6,I)/(E*lO00.)
IF C(ADATA(l,I).GE.NSAM1) .AND.(ADATA(1,I) .LE.NSAM2)) MhEN

NSAM - NSAM + 1
END IF

IF CADATA(1,I).EQ.NSAMI) NBEGT-I
C

C
10 CX)NT INUB

CLOSE (UNIT-25)
C
C
C SETUP WORK ARRAY
C

NEND - NBEG + NSAM - 1
DO 20 I - 1,NPT

C
W ORK(1,I) - AflkTA(7,NBEG+I-NPIT-1)
IF (WJIUC(1 1) .LT.W%0RK(1, I-i)) VARK(1 ,I)-N;0RK(1, I-i)+.oooooi
WV0RK(2,I) - AlATA(6,NBEG+I-NPT-1)
VWORK(2 ,NSAM4-NPT+I) - 2*AflATA(6 ,NEND)-AIEATA(6 ,NEND- I)
WRKC 1,NSAM?-NPT+ I) - 2 ATATA( 7,NEND) -AflATA( 7,NED-I)

20 OJNTINUE
C

£0 30 I - 1,NSAM
C

W3RK(1,I+NPT) - AlATA(7,1+NBEG-1)
IF (VORK(1,I+NPT).LT.WJRK1,I+NPT-1)) 'V0RK(i,I+NPT)
SWWIRC, I+NPT- 1)+. 000001
W.RK(2,I+NPT) - AtATAC6,1+NBEG-1)

30 ODINT INUE
£0 31 J - 1,NSAM+.2*NPT

VRI'E(26, s) wK(1, J),WRK2, J)
31 QJNTINUE

CLOSE(26)
C
C
C CURVE FIT
C

N - 2*NT + 1
£0 50 1 - 1,NSAM

C
£0 40 J - 1, 2*NPT+l

C
XCJ) - DBLE(V.DK(1I,+J-1))
YCJ - DBLECWJIRKC2,I+J-1))

40 COW I NUE
C

CALL RLRYIHCX,YN,RSQI),ID,P,C,S,A,B,IER)
GALL RUXOPMCC, ID,A,B,T)
HARDENCI) - SNGL(CC2)+2*C(3)AlATA(7,I+NBEG-1))

so UJNTINUE
c
C
C WI'PUT RESULTS
C
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OPEN (26,FiLE-ou.rFiLE)
VvRITE (26,*) NX
ZERO - 0.0
DO) 60 1 - 1,NX

C
IF ((ADATA(1 ,I).LT.NSA I).oR.(ArwrA(1,I).cGr.NsAm2)) ThEN

C

C
ELSE

C
)WITE (26,*) (ADAa'A(J,I),J-1,7),HA1RDEN(I-NBEo+1) ,ADATA(9,I)

C
END IF

C
60 CO)NTINUE
C

CLOSE (26)
STOP
END
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APPENDIX B

Material Parameter Determination Programs
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C
C QNON
C
C FIT OF HARDENING DATA BEIVEEN SPECIFIED VALUES OF
C STRESS
C
C STUART BROk;N 8-13-85
C
C VARIABLES
C
C NX NtMlBER OF DATA POINTS
C ADATA(NX, 7) DATA ARRAY
C ROW 5 SdXYITHED STRESS
C 6 HARDENING
C 7 PLASTIC STRAIN
C STRESS(NX) SM:THED STRESS
C STRAIN(NX) PLASTIC STRAIN
C SL LCPM STRESS DATA LIMIT FR FIT
C SU UPPER STRESS IDkTA LIMIT FOR FIT
C Q,QD EXPONENT IN HARDENING LAW
C C0 C * H0
C SIGS,SIGSD SICA STAR
C SO SIGVk ZERO
C SOCALC SIGMA. ZERO FR(M FIRST DATA POINT
C

PROGRAM QNON
EXTERNAL FITQ1,FITQ2

C
REAL ADATA(450,7) ,M4XSTRAIN
DOUBLE PRECISION QC.OSIGS
DOUBLE PRECISION X(2),F(450),XJAC(450,2),XJTJ(3),XY(450,2)
1 ,VW)RK(918),PARM(4),STRAIN(450),STRESS(450) ,HARDEN(450)
XUBLE PRECISION EPS,DELTA,SSQ,SU,SL,STSSIM,SOCALC
OM3N STRAIN,STRESS ,XY,SIGS ,Q,I0
CHARACTER* 20 FNMEPNAME

7 FORMAT(20A)
C
C INITIALIZE IkTA
C
C ZXSSQ PARAMETERS
C

N-I
M 1
NSIG - 6
EPS - 0.ODO
DELTA - 0. ODO
MAXFN - 5000
IOPT - 1
IXJAC - 450
NI - 1

C
C READ STRESS RANGE
C

PRINT 10
10 PORMAT (' INPUT LOPM STRESS LIMIT FOR FIT

READ *,SL
VWRITE (6,20)

20 FOIRM4T (' INPUT UPPER STRESS LIMIT FOR FIT
REDISU

C
C READ ILTA AND SET UP
C ZXSSQ FIT
C
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PR I NTr , "NME OF DATA F ILE
READ(*,7) FNAME
OPEN (25,FILE-FNAMlE,RECFM4-'DS')
READC25,*) NX
PRINTr *,"READING DA~TA"
DO) 30 1 - i,NX

C
READ(25,*) (ADATA(I,J),J-1,7)
STRESS(I) - DBLE(Afl4TA(I,5))
STRAINCI - DBLE(Afl4TA(I,7))
HARDEN(I) - DBLECAnkTA(I,6))
IF (STRESSCI).GT.SIGS) THEN

C
SIGS - STRES(I
MAXSTRAIN - STRAINCI)
END IF

C
30 CIJNTINUE
C
C SELECT DA~TA FOR FIT
C

DO) 33 I " i,NX
C

IF C(STRESS(I).cr.SL).AD.(STRlESSC).LT.SU).AN.
1 (STRAINCI).LT.MAXSTRAIN)) THEN

C
XY(Nl,i) - STRESS(I)
XYCNi,2) - HARDENCI)
Ni - NI + 1
END IF

C
33 OJDNTINEE
C

NI - NI - 1
CLOSE (UNIT-25)
PRINTr *,"FINISHED READING DATA'

C
C CAIDXJIATE S IGS AND
C TRANSFORM DA~TA
C

SIGS - SIGS + I.OD-3
C
C HARDENING FIT
C

VRITE (6,35)
35 FOmkT (p INPUr ESTIMWTE OF (CH0

READ *,X~i)
'%RITrE (6,36)

36 RwAu (, INPUr ESTIMATE OF Q)
READ *,Q
PRINT *,"STARTING FIRST 7XSSQ-
CALL 7XSSQ(FITQI ,Ni ,M, NS IG, EPS ,DELTA,MAXFN, IOPT, PAIN,X,
I SSQ,F,XJAC,IXJAC,XJTJWJR,INFER,IER)

PRINT *,"ZXSSQ FINISHED"
CHO - xci)
'V;RITEC6,40) Q

40 I:OfM4T ( I Q . ',D1O.5)
VAUITEC6,50) SIGS

50 FOXUYT 'X SIMS-
V1RITEC6,55) CHO

55 FORMAT (' CHO0 - ',D10.5)
V.RITE(6,60) JER

60 FORI&T (' JER - ',15)
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C
C SET UP PLOT FILE
C OF DALTA VERSUS
C F IT CURVE
C

PRINT *,"NAME OF HARDENING3 PLOT FILE
READ (*,7) PNAMIE
OPEN(UNIT-24 ,FILE-PNAME)
VRITE(24,*) NX
DD 100 I1 1,NX

C
HARD -REALCH~O*(1.DO - CSTRESS(I)/SIGS))**Q)
STRESSR - R.EAL(STRESSI)
VAITE (24.') STRESSR,AIMTA(I ,6), HARD

100 CDNTINUE
C

CLOSE( 24)
C
C SET UP FOR FIT FOR SO
C

PRINT *,"IPT ESTIMXTE OF SIG&4 ZERO
READ C',*) x(i)
PRINT *,"ZXSQ STARTING"
CALL ZXSSQCFITQ2 ,NX,N,NSIG,EPS,DELTA,M4XFN, IOPT,PARM,X,
1 SSQ,F,XJAC. IXJAC,XJTJ ViOIRK, INFER, IER)
PRINT * 'ZXSSQ FINISHED-
M.ITE(6 ,75) INFER, IER

75 FORMAT (' INFER - ',17,' IER - ',15)
VAUTE(6,8go) xci)

80 FOrMAKT (I so - ',DIO.5)
SOCALC-SIGS-(SIGS-DLE(AlATA(1 ,))
1 *DEXP(DBLE(ADATA(1 ,3))*CQ.0/SIGS)
V.RITE(6,90) SOCALC

90 FORMAT (' SOCALC - ',DlO.5)
C
C SFI UP PLOT FILE
C OF DA~TA VERSUS
C FIT CURVE
C

PRINT *,"NMAE OF STRESS/STRAIN PLOT FILE
READ (*.7) PNMIE
OPEN(UNIT-25 ,FILE-PNAME)
V&ITE(25,') NX
DO 1201 I 1,W

C
STRESSC - REAL(SIGS-C(SIGS-X(1))**C1-Q)+
1 (Q-1)*'O*0STRAINCI)/CSIGS**Q))**(l/(l-Q)))
STRAINR - REALCSTRAINCI))
STR.ESSR - REALCSTRESS(I))
VWITE (25,') STRAINR,STRESSR,STRESSC

120 CONTINUE
C

CLOSE(25)
STO.P
END
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C
C FITQ1
C
C EVALUATION SUBRCIJTINE FOR QNON
C
o STUIART BR('&J 8-14-85
C

suBRCLJTiNE FITQ1(X,NX,N,F)
IXXJBLE PRECISION X(2),F(45o),STRESS(450),sTRAIN(45o),SIGS,Q

1 ,XY(450,2),CHO
tXAN STRAIN, STRBSS ,XY, SIGS ,Q, CHO

C
PRINT *X

C
DDl 10 I-1,NX

C
FCI) - XY(I,2) - XC1)*((1.DO-CXY(1,1)/SIGS))**Q)

C
10 ODNTINUE

RETURN
END
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C
C FITQ2
C
C EVALUATION SUBRCUMINE FOR QNON
C
C STUIART BROW& 8-14-85
C

suBRWuriNE FITQ2(X,NX,N,F)
DOUJBLE PRECISION X(2),F(450),STRESS(450),STRAIN(45o),SIGS,Q
1 ,XY(450,2),CHO
CXUMN STRAIN,STRESS ,XY,SIGS,Q,C{0

C
PRINT ,X

C
DO 10 I-1,NX

C
F(I) - STRESSCI - SIGS + ((SIGS-X(1))**(1-Q)

1 + (Q-1)*CHO*STRAIN(O)/SIG**Q))**(1,(1-Q))
C
10 0DNTINUE

REMMR
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C
C ISOcON
C
C DETERMINES MATERIAL CONSTANTS FOR CONSTANT
C STATE DATA USING NONLINEAR, LEAST SQUARES, INSL ROUTINE
C ZXSSQ. (DOIJBLE PRECISION VERSION)
C
C STUART BR(3tN 4-4-86
C
C VARIABLES
C
C DATA(NX, 6) DATA FILE
C COLUMN 1 TEST ID NUMBER
C 2 TEMPERATURE
C 3 INITIAL STRAIN RATE
C 4 FINAL STRAIN RATE
C 5 FINAL STRESS
C 6 INITIAL STRESS
C TEMP(25) TEMPERA'IURE (KELVIN)
C RATEI(25) INITIAL STRAIN RATE
C RATEF(25) FINAL STRAIN RATE
C CURVE(25) ID NUMBERS OF (URVES
C STRESSF(25) STRESS IMIEDIATELY AFTER JU%P
C STRESSI(25) STRESS INMMIATELY BEFORE JMP
c x(3) E(UTION PARAMEES
C F(25) RESIIJE FRCM FIT
C N NUMBER OF PARAMETERS
C NSIG SIGNIFICANT DIGITS REQUIRED FOR
C PARAMETERS
C
C FILE ASS IGNENTS
C
C FtOR025 INPUT FILE
C
C SUBROXTINES
C
C FITISO USED IN ZXSSQ
C ZXSSQ FITTING ROUTINE
C

PROGRAM I SOCODN
C INITIALIZE DATA
C

EXTERNAL FITISO
DOUJBLE PRECISION X(S),F(99),XJAC(99,5),XJTJ(15),RATEI(99)

1 ,WVRK(238),PAM(4),RATEF(99),STRESSF(99),TEP(99),CJRVE(99)
2 ,STRESSI(99)
REAL DATA(99,6)
DXJBLE PRECISION EPS ,DELTA,SSQ,Q,A,STXI ,MP
CQJH IER * 20 INFILE
QIOMbDN RATEI, RATEF,TEWP, STRESSF,Q,A, STXI ,MP,STRESS I
N-2
NSIG - 8
EPS - O.ODO
DELTA - 0.ODO
MA'XFN - 5000
IOPT - 0
IXJAC - 99

C
C READ DATA
C
6 FORMAT(20A)

PRINT *,"ENTER NAME OF DATA FILE:
READ (*,6) INFILE
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OPEN (25,FILE-INFILE,RECBM-'DS')
OPEN (12,FILE-'ERROR.LS')

DO 10 1 - 1,NX

READC25,*) (DATACI,J),J-1,6)
RATEICI) - DBLECEATA(I,3))
STREssFCI) - DeLE(rATA(i,5))
smRESSI(I) - DBLE(rwrA(1,6))
TEMPOI) - DBLE(DATACI,2)) + 273.14D+O
RATEF(I) - DBLE(EDACI(,4))

10 CIJNTI NUE

CLOSE CUNIT-25)

C ESTIMULE CO~NSTANTrS

PRINT7 *,"INPijr ESTIMATE OF A-Q TERM
READ (*,*) XCI)
PRINr '"INPUr ESTIMUTE OF M
READ C')X(2)

C PERFORM F IT

CALL ZKSSQ(FITISO,NXNNSIG,EPS .DELTA,MAXFN, IOPT,PARM,X,
1 ~SSQ,F,XJAC, IXJAC,XJTJ ,JR, INFER, IER)

MAITE (*,70) INFERPIER
70 F0RMkT (' INFER - ',17,' IER -',15)

M.ITE (*,so) x(i)
80 FORMUTC A/Q - ',D12.5)

'MITE ('81) X(2)
81 F0RMkT C'M - '.1)12.5)

PRiN'r CFJ,-,)
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C
C FITISO
C
C EVALUATION SUBROTINE FOR I SOCON
C
C SRT BRMN 4-4-86
C

sumoRWinE FITISO(X,NX,N,F)
LXOUBLE PRECISION XCS),F(99),RATEI(99),STR.ESSFC99),TEMP(99)
DOUBLE PRECISION ZI .ZF,ARGNUAERARGDENCM,QA,STXI ,MP,RATEF(99) ,AI
DOUBLE PRECISION STRESSI (99) ,ARG1 ,ARG2
1MJN RATEI ,RATEF,TE1P ,STRESSF,Q,A,STXI ,M,STRESSI

C
PRINT *,.X(1),X(2)

C
DOl 10 I - 1,NX

C
ARGNLNER - X(i) *RATEF(I)**XC2)
ARGENCMv - X(i) *RATEI(I)**X(2)
ARGi - DLOG( ARGNt)4ER + DSQRT( 1.- ODO + ARGNUAER*ARGNUIEM)
ARG2 - DLOG( ARGDENCA + DSQRT( 1. oDo + ARGDENM'ARGDENCM)
PCI) - (STRESSF(I)/STRESSI ()) -(ARG1IARG2)

10 ONTINUE
C

REMUR
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C
C SATODNS
C
C DETERMINES M MATERIAL OONSTANrS FOR SATURATION
C STRESS DATA USING NONLINEAR, LEAST L4JARES, IMSL ROXJTINE
C ZXSSQ. (DOUBLE PRECISION VERSION)
C
C STUART BROMN 11-22-86
C
C VARIABLES
C
C DATA(NX, 6) DATA FILE
C ODLLM I TEST ID NIMBER
C 2 TWPERAURE
C 3 STRAIN RATE
C 4 C *HO
C 5 SICA. STAR
C 6 SICMA ZERO
C TWMP(25) TEVIPERATURE (KELVIN)
C RATE(25) TEST STRAIN RATES
C SIGSTAR(25) TEST SIGMA STARS
C CJRVE(25) ID NUvBERS OF CURVES
C CH0(25) C * HO VALUES
C X(3) EQUATION PARAMETERS
C F(25) RESIDUE FRCM FIT
C N NLMBER OF PARAMETERS
C NSIG SIGNIFICANT DIGITS REQUIRED FOR
C PARAMErERS
C
C FILE ASSIGMIvENTS
C
C FOR025 INPUT FILE
C
C SUBROUTINES
C
C FITSAT USED IN ZXSSQ
C ZxSSQ FITTING RO(UTINE
C

PROGRAM SATODNS
C INITIALIZE DATA
C

EXTERNAL FITSAT
DOUBLE PRECISION X(3),F(99),XJAC(99,3),XJTJ(10)
1 ,VMOK(219), PARM(4),RATE(99), S IGSTAR(99),TEMP(99), CH)(99)
REAL DATA(99,6)
DOUBLE PRECISION EPS,DELTA,SSQQ,X,IPA,A
CHARACI'ER20 INFILE
QCMON RATE,SIGSTAR,T!,-U,Q,XI , P,A
N- 3
NSIG - 6
EPS - 0.ODO
DELTA - 0.ODO
hAXFN - 5000
IOPT - 0
IXJAC - 99

C
C READ DATA
C
6 FOk-IAT(20A)

PRINT *,"ENTER NAME OF DATA FILE:
READ (',6) INFILE
OPEN (25,FILE-INFILE,RECM-'DS')
OPEN (12,FILE-'ERROR.LS')
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READ(25,*) N
DO 10 I - 1,NX

C
READ(25,*) (DATA(I,J),J-1,6)
RATECI) - DBLE(DATA(I,3))
SIOSTAR(I) - DBLE(DATA(I,5))
TEMP(I)- DBLE(rikTA(I,2)) + 273.14D+0
CHO(I) DBLE(DATA(I,4))

10 CONTINUE
C

CLOSE (UNIT-25)
C
C ESTIMATE CDNSTANTS
C

PRINT *,"INPUT ESTIMATE OF STILIfA:
READ (*,*) X(l)
PRINT *,"INPUT ESTIMATE OF N
READ (*,*) X(2)
PRINT *,"INPUT ESTIMATE OF QDS
READ (*,*) X(3)
PRINT "INPUT VALUE OF XI
READ (: ") Xi
PRINT *,"INPUT VALUE OF A
READ (*, *) A
PRINT *,"INPUT VALUE OF M
READ (*, *) PM
PRINT *,"INPUT VALUE OF Q
READ (C*) Q

C
C PERFORM FIT
C

CALL ZXSSQ(FITSAT,NX,N,NSIG,EPS,DELTA,MXFN,IOPT,PARM,X,
1 SSQF,XJAC, IXJAC,XJTJ ,W)RK, INFER, IER)
vuRITE (*,70) INFER,IER

70 FORMAT (' INFER - ',17,' IER - ',I5)
VRITE (*,80) (X(I),I-1,3)

80 FORMAT (' STILIDA - ',D12.5,/' N - ',D12.4,
1 /V ?DS -',D12.5)

PRINT *, (F J. p ;X)
STOP
END
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C
C FITSAT
C
C EVALUATION SUBRCUMINE FOR SATCDNS
C
C S~thART BRM~ 11-22-86
C

suBR(XTriNE FITSAT(X.NXN,F)
DOUJBLE PRECISION X(3),F(99),RATE(99),SIGSTAR(99),TIP(99),C*)(99)
DOUJBLE PRECISION Q,XI ,PM,AARG,C
W~MN RATE, SIGSTAR,TBEi, ,Q,X, ,PMPA

C
PRINT *X(1),X(2)

C
DO 10 1 - 1,NX

C ARG - ((RATECI)/A)*DEXP(Q/(8.314D-3*TBdP(I))))**PM
C - C1/XI)*DLOG(ARG + DSQRT(1+ARG*ARG))
ECI) - DLOGCSIGSTAR(I)) - DLOGCC*XC1)*((RATE.(I)/A)*

1 DEXP(XC3)/(8.314D-3*TEW4(I))))**X(2))
10 CONTINUE
C

REIURN
END
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C
C HOCALr
C
C DETERMINES HO AND INITIAL STATE VALUES USING MATERIAL
C CONSTANTS DETERMINED FR(?V4 SATCONS, AND ZEROXN PROGRAS.
C
C STUART BRCON 12-13-85
C
C VARIABLES
C
C DATA(NX, 6) DATA FILE
C COLUVN 1 TEST ID NUVIBER
C 2 TEMPERATURE
C 3 STRAIN RATE
C 4 C * HO
C 5 SICMA, STAR
C 6 SIGNA ZERO
C TEMP(99) TEMPERATURE (KELVIN)
C RATE(99) TEST STRAIN RATES
C SIGSTAR(99) TEST SIGMA. STARS
C CURVE(99) ID NLUVBERS OF CJRVES
C Cf)(99) C * HO VALUES
C
C FILE ASSIGMENTS
C
C FOR025 INPUT FILE
C FOR026 OUIPUT FILE
C
C

PROGRAM HOCALC
C INITIALIZE DATA
C

REAL RATE(99),SIGSTAR(99),TEMP(99),CO0(99),SIGZERO(99)
REAL IATA(99,6),X,C(99),SO(99),HO(99)
REAL ALPHA,A,Q,MHOAVE,HOSLM
QIARACTER*20 INFILE,CXrFILE

C
C INPUT CONSTANTS
C

PRINT *,"INPUT VALUE OF A
READ (*,*) A
PRINT *,"INPUT VALUE OF ALPHA
READ (*,*) ALPHA
PRINT ,"INPUT VALUE OF Q
READ (',*) Q
PRINT *,"INPUT VALUE OF M
READ (*,*) M

C

C READ DATA
C
6 R)RMAT(20A)

PRINT *,"ENTER NAME OF INPUT ITA FILE:
READ (*,6) INFILE
OPEN (25,FILE-INFILE,RECFM-'DS')
PRINT ,"ENTE NME OF OUTPUT DATA FILE:
READ ( ,6) OUTFILE
OPEN (26 ,FILE-XJrfFILE ,REClM 'DS')
READ(25,*) NX

C
:OSUMV- O.

C
DO 10 I - 1,NX
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C
READ(25,*) (DATA(I,J),J-1,6)
RATECI - 1ATA(I,3)
SIGSTARCI - EWI'A(I,5)
TENPCI) - fl4TA(I,2) + 273.14E+0
QCI) - EkTA(I,4)
SIGZERO(I - IiATA(I,6)
X - (RATE(I)*EXP(Q/8.314E-3/TEL1(l))/A)**M
C(I) - 1/-ALPHA)sALOG(X+SQRT(1+X*X))
S0() SIGZERO(I)/C(I)
HOCI - Qio~i)/c(i)
HOSLM - HOC I + HOSLM
'WRITE (26,9) (DATACI ,J)dJ-1,6),SO(I),C(I),HO(I)

9 FORM4T(2F9.0,F6.3,4FI0.4,F9.5,F9.0)
C
10 WINTINUE
C

CLOSE (UNIT-26)
CLOSE (UNIT-25)'

C PERFORM FIT
C

HOAVE - HOSLM/NX
'WRITE (*,7o) HOAVE

70 FORMkT C'HO - ',F9.3)
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APPENDIX C

Constitutive Model Integration Routines
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C
C I SOINTc
C INTEGRATION OF ISCmERMAL, COXNSTANT RATE TESTSC
C STUART BRO1WN 10-29-86
c
c
C VARIABLE DESCRIPTION
C
C CP STRESS/STATE PROPORTIONALITY
C IDLD HOLD TINE
C EMOD YCUNG'S MIXOLUS IN MPA
C TItUR JXRATION OF TEST
C RATE STRAIN RATE
C N NBER OF EQUATIONS
C IND SUBROUTINE OPTION FLAO
C TOL LOCAL CONVERGENCE TOLERANCE
C NW
C X TINE
C Y(i) VALUE OF STATE VARIABLE
C C(2I)
C IER
c W(,9)C

PROGRAM ISOINT
EKIERNAL EVOL
REAL STRESS, STRAIN,TIrLDuw(1,9),C(24 ),y(l)QIARACER'*20 OUTFILE, INFILE
=60N RATE, HO, SSTAR, P, A, SO, B, QR, SNtID

5 FORM4T(A)
C

PRINT *,"ENTER INPUr FILENAME
READ (s,5) INFILE
PRINT *, "ENTER (XrPUT FILENME
READ (*,5) Cur'FILEC

C READ DATAFILEC
OPEN(24,FILE-INFILE,RECF..'DS', STA'ITUS-'OLD')
READ (24, *) RATE1 I STRAIN RATE ONE
READ (24,*) RATE2 I STRAIN RATE IM
READ (24, *) SJtU I JUt STRAIN
READ (24,*) TEMP I TEMPERATURE IN CELSIUS
READ (24, *) SFIN I FINAL VALUE OF STRAIN
READ (24,9) NSTEPLDI I # STEPS IN LOADIN3 PERIOD 1READ (24,*) NSTEPLD2 I # STEPS IN LOADING PERIOD 2READ (24,*) Y(i) I INITIAL VALUE OF S (MPA)
READ (24,') 5iD YORS MIDJLUS (MPA)
READ (24,*) S&M I SHEAR MWWS (MPA)
READ (24,*) XI I STRESS/STATE SCALING
READ (24,*) Q I RATE ACrIVATION ENERGY
READ (24,*) EM I RATE EXPONENT
READ (24,') AP PREEXPONENTIAL
READ (24,') HO I AThEMAL HARDENING RATEREAD (24,') A I EXPONENT IN HARDENING LAW
READ (24,*) STILDE I SATURATION SCALING
READ (24, *) EN I SAIRATION EXPONENT
R ,. ,(2 ,2) = SAraATION ACIVATiON Er GlREAD (24,') B I STATIC REC PRBWULTIPLIER
READ (24,') QR I RECUVERY ACTIVATION ENERGY
READ (24,') P I REWVEY TEIEPONENT
CLOSE (24)
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C

ARG - (CRATEl/AP)*EXP(Q/((TEAP+273.16)*8.314E-3)))**EM
CP- Ci ./XI)*ALOG(ARG+SQRT(1.+ARG*ARG))

SSTAR-STILDE((RATEl/AP)*EXP(QDS/((TEMP+273.16)*8.314E-3)))*'EN
TINT1 - SJUM4P/RATE1
TINT2 - (SFIN-SJIMI)/RATE2
TL.D1 - TINT1/NSTEPL.D1
TLD2 - TIzNr2/NSTEPLD2
OPEN(UNT-25 ,FILE-OWFFILE)
'VRITE (25,') NSTEPLD1 + NSTEPLD2

C
C INITIAL LOADING INTEGRATION LOOP
C

X - 0.0
RATE - RATE 1
DO 100 I = 1, NSTEPLD1

TEND - X + TLDi
IND - 1

NW- 1
TOE. - .0010
CALL U'ERK(N. EV)L.X. Y,TEND, TOL, IND,C,NWWIER)
STRESS - CPsY(i)
STRAIN - ( STRESS / BM) ) +( X * RATEl
WRITEC25,*) STRAIN,STRESS,TEND,Y(l)

C
IF (CIND.LT.0).OR.(IER.GT.0.)) MhEN

C
PRINT *,"IND -",IND)," AND IER -",IER

00 MIt 400
C

END IF

100 ONINUE

X - 0.0
RATE - RATE2
ARG - ((RATE2/AP)*EXP(Q/(CTEMP+273. 16)*8 .314E-3)))'*EM
CP - (1. /X ) *ALOGCARG+SQRT(1. +ARG*ARG))
SSTAR-STILD)E*C(RATE2/AP)*EK((QS/((TI+273.16)*8.314E-3)))**EN
DO 200 1 m 1, NSTEPLD2

C
N- I
TEND -X + TD2
IND -1I
N'W - 1
TOE. - .0010
CALL DVERKN,E'AL,X,Y,TEND,OlM, IND,C,NTW, IER)
STRESS - CP*Y(1)
STRAIN - ( STRESS / BMU ) +( X * RATE2) + SJU4

VRITE(25,*) STRAIN, STR.ESS, TEND+TIi , yoi
C

IF C(IND.LT.0).OR.(IER.QT.0.)) MIEN
C

PRIN '1UJ-",-, AMD iER -", IER
030 TO 400

C
END IF

C
200 ONTINUE
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C
400 CLOSE(25)

S70P
END

C
C
C EVOL
C
C EVALUATION SUBR(XrINE FO)R ISOM~
C
C SIUAT BRCPIN 10-28-86
C

SUBROA~fINE EVOLCN,X,Y,YPRIE)
C

REAL Y(N) ,YPRIME(N) ,7M1LD
CX~vMJN RATE,HO,SSTAR,P,A,SO,B,QR,S4JD

C
YPRIIME(1) - HO * ((l-(Y(1)/SSTAR))**A) * RATE-

1 (B*(Y(1)/%D)**P)*S&voEXP(-QR((Er W+273.16)*8.314E-3))
C
C

RMUMR
END,
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d RECINT
C
C INTEGRATION OF RECOVERY TESTS
C
C SILART BR(ON 10-29-86
C
C
C VARIABLE DESCRIPTION
C
C CP STRESS/STATE PROPORTIONALITY
C TDILD -OLD TIME
C E YUUNM'S MCULUS IN MPA
C TDUR DURATION OF TEST
C RATE STRAIN RATE
C N NUBER OF FqATICNS
C IND SUBR(XTINE OPTION FLAG
c TOL LOCAL CONVERGENCE TOLERANCE
c Nw
C X TINE
C Y( 1) VALUE OF STATE 'VARIABLE
c C(21)
C IER
c W(1,9)c

PROGRAM RECINT
EXTERNAL EVOL
REAL STRESS,STRAIN,TIDLDW(1 ,9),C(24),Y(1)
GWAUAC-TER*20 -CUTFILE, INFILE
ahMN THOLD, RATE, HO, SSTAR, B, EMJ, TEMP, QR, P, TiB, A, SO

5 FORMaT(A)
C

PRINT ,"ENTER INPUT FILENAME
READ (*,5) INFILE
PRINT *,"ENTER OUTPUr FILENME
READ (',5) OUTFILE

C
C READ IATAF I LE
C

OPEN(24,FILE-INFILE,RECFM-'DS',STAIUS-'OLD')
READ (24,*) RATE I STRAIN RATE
READ (24,') SILD I HOLD STRAIN
READ (24,) THDLD I TIME HELD FOR RECOVERY
READ (24,*) SFIR I FINAL VALUE OF STRAIN
READ (24,*) NSTEPLD1 I # STEPS IN LOADIIN PERIOD
READ (24,*) NSTEPHD I # STEPS IN IDLD PERIOD
READ (24,') NSTEPLD2 I # STEPS IN RELOADING PERIOD
READ (24,') Y(i) I INITIAL VALUE OF S (MPA)
READ (24,') EMND I YOUNGS NEIULUS (MPA)
READ (24,*) CP I STATE/STl.ESS PROPORTIONALITY
READ (24,*) HO I ATHERMAL HARDENING RATE
READ (24,') A I EXPONENT IN HARDENING LAW
READ (24,') SSTAR I SAURATION VALUE OF S
READ (24,') B I PREAJLTIPLIER IN RECOVERY TERM
READ (24,') I SHEAR MODJLUS IN GPA
READ (24,') QR I RECOVERY ACTIVATION ENERGY
READ (24,') TE I TEMPERATURE IN KELVIN
READ (24,*) P I RECOVERY TERM EXPONENT
CLOSE (24)

C
C

SO - Y(1)
TIM - SHOILD/RATE
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TLD1 I - ThB/NSTEPLDl
TLD2 - (SFIN-SIIDLD)/RATE
TLD21 - TLD2/NSTEPLD2
THDI - 7IIL/NSTEPHD
OPEN(UNIT-25 ,FILE-OLTrFiLE)
W~ITE (25, s) NSTEPLD1+NSTEPHDi-NSTEPLD2+1

C
C INITIAL LOADING INTEGRATION LOOP
C

X - 0.0
DO 100 1 ft 1, NSTEPLD1

C
N- I
TEND - X + TLD1 I
IND - 1

NW- 1
MOL - .0010

CALL EIVERK(N, EVOL,X,Y, TEND, TOL, IND,C,NJW, IER)
STRESS : cP*y(1)
STRAIN ( STRESS / BMEE ) +( X * RATE)
V.RITE(25,*) STRAIN,STRESS,TENDYC1)

C
IF ((ND. LT.o0).cR.C(IER.Gr. 0.)) TI1EN

C
PRINT *,"IND - -,IND,- AND IER - ",IER
GO TO 400

C
END I F

C
100 OONTINUE
C
C IfDLD INIEGRATION LOOP
c

DO 200 I - 1, NSTEPHD
C

N- I
TEND - X + THDI
IND - I

NW 1
'lOL. - .001
CALL DVERK(N, EW)L,X, Y, TEND, TOL, IND,C,NWW, IER)
STRESS - 0.0
STRAIN - IM * RATE
WITE(25,*) STRAIN,STRESS,TEND,Y(1)

C
IF (UND.T.o).OR.(IER.JT.0.)) TI]EN

C
PRINT *,"IND) - ",IND," AND IER - -,IER
GO TO 400

C
END IF

C
200 CfltrINUE
C
C RELOADING INTEGRATION
C
C

STRESS - CP *Y~i)
STRAIN - (STRESS/B!D) + (X-IIULD)*RATE
'MRITE (25,') STRAIN,STRESS,X,YC1)

C
DO 300 I1 1, NSTEPLD2

C
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Ni
Tku'D - X + TLD21
IND - 1
NW - 1
TOL - .001
CALL UDERKCN,EVOL,X,Y,ThND,T0L, IND,C,NWW IER)
STRESS - CP * YMi
STRAIN - ( STRESS / BM)) + (X-7IILD) * RATE
vRITEC25,*) STRAIN,STRESS,TEND,YC1)

IF ((IND. LT. 0).OR. (IER.GT. 0.)) TEEN
C

PRINT *,"IND -",IND," AND IER - ",IER
GO 70 400

C
END IF

c
300 CONTINUE
400 CLOSEC25)

STOP
END

C

C EVOL
C
C EVALUATION SUBROUTINE FOR RECINT
C
C S7WAT BROW~ 10-28-86

SUBROXTIINE EVOL(N,X,Y,YPRIME)

REAL Y(N) ,YPRIME(N) , IIU
CMM)tLN 'IELD,RATE,H0i,SSTAR,B,B&JITEM,QR,PTHB,A,S0

IF C(X.LT.2II).OR.(X.GE.'MB+ILD)))) MEN

YPRIIMC1 - HO * (C1-YC1)/SSTAR))**A) * RATE
1 - B*EXP(-QR/8.314E-3/TEMP)*EMJ * (Y(1)IBfi)**P

ELSE
YPRIMEC1)- -BEP-R834-/EW*N*YI/N)*

END IF

RE7URN
END



SUBROUrINE UAT(STRESS, STATEV,EDSIX)E, SSE, SPD, SCD, STRAN,DSTRAN,
1 TINE,DTIMETE P,DTBP,PREDEF,DPRED,MXTERL,NDI ,NSHR,NTENS,
2 NSTATV,PROPS,NPROPS,cXXRDS)

C Isotropic Thermo-Elasto-Viscoplasticity with pressure sensitive
C plastic flow and plastic dilatancy.

* s$$** asssa ss$$* ass a5 s a$$ assas a5s*as ass s ass555588 ss $ss* as$a8*5*8

C This U&KT version interfaces with the *VISCD procedure in ABAEJS.
C Automatic timestep control is done using the C1AX parameter. The
C timestep is decreased if CEMX exceeds CETOL.

C This ULiAT version is not for use in plane stress or any other cases
C where more strain terms than stress terms are used.

C State Variables:
C STATEV(1) - S (plastic flow resistance,tensile,suggested
C units are N/m2)
C STATEV(2) - Th (temperature,suggested units are Deg.K)
C Two more are for debugging and plotting purposes.
C STATEV(3) - F (plastic shear strain rate)
C STATEV(4) - time integral of F (plastic shear strain)

C Contents of PROPS vector in this version:
C J PROPS(J)
C --- ----------
C 1 PLSLMT -- limit on equiv. plastic tensile strain increment
C 2 PHI -- degree of implicitness (ranges from 0 to 1)
C 3 CNEGA -- fraction of plastic work going into adiabatic heating
C 4 SO -- initial value for internal variable S
C 5 TO -- initial value for temperature
C 6 AMU -- shear modulus
C 7 :,APPA -- bulk modulus
C 8 ALPHA -- thermal expansion coefficient
C 9 RBO -- density
C 10 C -- specific heat
C I1 A -- pre-exponential factor in plastic shear strain rate
C 12 Q/R -- activation energy divided by universal gas constant
C 13 XP -- exponent in eqn for F (1./strain rate sensitivity)
C 14 PALPHA -- pressure sensitivity parameter
C 15 HO -- pre-multiplier in hardening rate equation
C 16 SB -- pre-multiplier for saturation value of S
C 17 AN -- exponent in equation for saturation value of S
C 18 B -- pre-multiplier for rate of static restoration
C 19 SA -- annealed value of S
C 20 P -- exponent in equation for RDJT
C The above list of properties is specific to the functions chosen for
C modeling one particular material. For other materials a different list
C may be desirable. For example, additional properties would be needed
C to define -functions of temperature for the elastic constants and for
C the annealed value of internal variable S.

C See subroutines U/IPROP, GAMMT, and SDOT for suggested units for
C the above properties.C* *s ss* 8S85*5*S*S5 sss*ssa * 8SS* 5 * 5**5** *s**s* s * 8*88*

C The values input for SO,AHO,SB,B,SA should correspond to tensile
C test data. These values are converted to equivalent shear values
C within the subroutines.

C The parameter PHI controls the degree of implicitness of the
C integration procedure.
C PHI-0.0 ---- explicit
C PHI-.0 ---- fully implicit
C Suggested value of PHI: equal to or greater than 0.50
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C The parameter CKMGA controls whiether the problem is isothermal or
C adiabatic.
C CM~EGA-.0 ---- isothermal
C CM'AG-.0 --- adiabatic
C Suggested value for fast deformations is 0.9

I1&OLICIT -REAL*$ (A-H,O-Z)

C Comon blocks CERROR and QONSTS appear here exactly as they exist in
C ABAQUXS version 4-5-159. They will generally be different for other
C ABA4UJS versions.

O:Mo/CERROR/RAAX30) , JNRBKC 30),ERRMAX(2) ,CTOL,CSLIM,
1 CBIAX,PCrOL,TLIMIT,PSTJBIN,REM{N,IxMAX(30) , iNDLxb(3o) ,ERRPRE,
2 UDELSS, IOL ,AIOL ,E?4Er ,[MRETL, SIOOL ,DS IGKK,UrOL ,MAX,U4MAX,
3 IM4,X ,VKX ,AMkX,AiQ4X ,IMAX ,EPKX , MAX, R4ALAX , NOPEN ,NGCLOS,
4 RUFIOL,ROTFAC, JRIKND,NINXCS ,RIKUB ,RI1U,RIKl&,RIKLAM,RIKDIA,
5 RIKRO ,RIIOLD,RIKLNV,QX,LIMAXP ,STRRAT, PClr,RIKDLO

WCtAJN/OJNSTS/PI ,S1N60,cDs60,KClIOS2C3) ,KCROS3C3)-,ZERO,LZERO,LONE,
1 ONE,lV,IIALF,ABIG,ASMALL,BCBIGLOCSHR(2 ,3) ,THIRD,PRECIS ,BLANK

DIMENS ION STRESS NTNS) ,STAThV(NSTATV) ,inScE(N'rENs ,NTENs),
1 sTRANCNTENS) ,DSTRAN(NTENS) ,PREDEFC1) ,DPRED(1),PROPS(NPROPS),
2 OJORDS(3)

SQART3- MOS 1N60
NDIPl-NDI+1
PHIrlr-PROPS(C2) 5UIMI

C Initialize the state variables, if ncsay

IF (STATEV(-l).LE.ZERO) MhEN
STATEV( 1)-PROPS(4)/SQART3
STATEV(2)-PROPS(5)
STATEVC 4)-ZERO
END IF

C Set the state variables.

S-STATEV( i-)
TH-STATEV( 2)

C The parameter TAITIOL is the minim=m value allowed-for TAUB. This
C avoids difficulties that could arise'when dividing by TAUB. The value
C used corresponds to a stress level at 'which F is considered
C negligible, 'while 1./TAIXIL**2 can still be evaluated.

TAlJrO0L-S'l .D-6

C Subroutine 1MNROP determines AMJ,AKAPA,ALPHA,RHU,and C based upon
C the temperature 7HI, using data supplied in PROPS. For the present
C case, the properties are assumed constant and input directly in PROPS.
C In other cases,-additional data constants defining functions of 'Ii for
C each property may be input. as

CALL t.MROP CM4.,AKAPPA,ALPHA, RHD, C .1H PROPS, NPROPS)

C Pressure PB and equivalent shear stress TAUB

CALL SINV (STRESS,SINVI,SINV2)
TAIJB-fl'X I (S INV2 /SQART3, ,TAUrOL)
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PB--SINV1
* * $$*1$ * ***888 *** *855*8 8*8 * 8$* * $ $ * * * $$8* * * 8*85 * ** 88* * *$ 5* * * **$ **

C Subroutine SBETA determines the value of the plastic dilatancy
C factor BETA. Presently set to zero.
C 8 $$*8 * * * * * * *5888888*ss8*8 ** *8 *$**88* * 8*$8* 8 * * * *8* *$$$$* * $

CALL SBETA (TAUB, PB,TH, S,BETA)

IF (PROPS(3).Gr.ZERO) IE
a3N1-PROPS(3) *(TAUB-BEA*PB)/(RD*C)
ELSE

I-ZERO
END IF

C Subroutine GAM= determines the equivalent plastic shear strain rate
C F and its derivatives PDA,PDBPDC,PID with respect to TAUB,PB,TH,and
C S, respectively. To make the subsequent calculations more convenient,
C PDB,PDC, and PMO are returned as:
C RATIOB - PDB/PDA
C RATIOC - PDC/PDA
C RATIOD - PMD/PIY
C ODN2 is returned for use in subroutine SDOT.C* * ** 8** ** ** 8* * * ** * * 8**8* * 8* **8* * * * * 8* ** * * ****************** ****

CALL GAMDOT (TAUB,PB,TH,S ,PROPS ,NPROPS ,SQART3,
1 F1, PIA, RATIOB,RKrIOC, RATICD, cON2)
AMJB-AMJ*TAUB/ (TAUB+AMJ*PHIDr*F1)

C Subroutine SDOT determines the hardening rate H and the static
C restoration- rate RDOT. SA, the annealed value of S at this
C temperature, is also returned-.

CALL SDOT(TAUB,PB,TH,S,AMJ,CXN2,PROPS,NPROPS,SQART3,Fl,H,RDOT,SA)
DR-RDOT*DrII&

G-AMLJ- (RATIOB*AKAPPA*BEA+RATIOC*cDN1+RATICD*H)
V=PHIDr*PDA*G
VI-FI *DTINE/ (ONE+V)
V2-PHIDT* PIA/ (ONE+V)

C Trace of strain increment --

DIVL-ZERO
DO 10 KI-lNDI

10 DVOL-DV L+DSTRAN(KI)

C Convert stress to deviatoric stress.

DO 20 KI-1,NDI
20 STRESS(K1)-STRESS(Kl)+PB

C Deviatoric stress times strain increment-- SDSI

SDSI-ZERO
DO 30 KI=I,NTENS

30 SDSI-SDSI+STRESS(K1)*DSTRAN(K1)

C Effective plastic sheai strain Increment.

DCL4P .V1 I V2 8A4J * SD_ /MAjL1B-AK4PPA*RATI0B*Fny.Y_)

C Increments DS and DTH.

DS-H 8 DGAMPB-DR
DTH-C3 1 *DGAWB

,=. = .. .. , , .. , . ,. ....



C Constants -for Jacobian and stress increment.

V3-M'lWAM
Vi 1-AXAPPA-O 3THIRD*AM
V4-V113JJYOL
V5-AKAPPA*ALPHAUIH/ IHIRD
V6-AKAPPA*BETA*DGAW4B
V7-V4 -VS-V6
V8-MU*DaMB/TAUB- CAMJ-MB) *SDS I /TAUJB* *2
V9-AMB
V12-(V2AMJ 2+AMB-AMJ)/TAJB* *2
Vi 3- -V2 3AKAPPA*RATIO, 3 AMU/TAUB
V14-V2 *AKAPPA* (ANMAMJ) *(BETA+CDN1 *ALPHA/THIRD)
V15- -V2 *AKAPPA* 32 *ATIOB* CBE"ir.+oJNl *ALPHA/THIRD)
V16-Vi 1-Vi5

C Calculate the Jacobian, v~1ict is nonsymnetric unless V13-V14. This
C is genera-lly true only if QvIEA-0, BETA-0, and PDB-0. Otherwise.
C ABAQUJS will use only the symnetric part of the Jacobian unless an
C unsynmetric Jacobian has been called for on the title card.
C Note that STRESS used here is the deviatoric stress.

DOl 40 K1-1,NTENS
DO 40 -K2-1,NTES

40 nSLUECKI ,K2)- -V12 *STRESS(K1) *STRESSC(K2)
DO 50 K1-l-,NDI
MO 50 K2-1-,NTENS
MISE JEK1,K2)IDSEEK1,K2) -V 4 *STRESS(KW)

50 rVSLE(K2 ,K1 )-rnSrE(K2 ,K1 ) -V13 *STRESS (K2)
DO 60 -Kl-1,NDI
USEEK,Kl)-MISMIE(KI ,K1)+V3
DO 60 -K2-l.NDI= ~60 IDSMIE(K1 ,K2)-MISMIE(K1 ,K2)+Vl6
IF (NSHR.cGr.0) MIEN
DO 70- KI-NDIP1,INTENS

70 LOSE(Ki,K )-IDDECK1 ,K1)+V9
END IF

C Calculate comnplete STRESS at the end of the increment using the
C deviatoric stress at the beginning of the increment.

DO 80 K1-1,NDI
80 STRESS(Kl)-(ONE-V8)*sTRESSCKl)+V3*DSTRAN(K1 )+V7-PB

IF (NSHR.or.0) TIEM
DO 90- K1-NDIP1.NTES

90 STRESSCK1)-CCNE-VS)*STRESS(K1 )+V9*DSTRAN(Kl)
END IF

C Update the-state variables.

CALL SINV (STRESS, SINV1, S1NV2)
TAIJB-EWiXi (S IN2 /SQART3 ,TAUI'OL)
PE--SINVI

S-S+DS
IF (S.LT.SA) S-SA
CALL GAM=Y (TAUB,PB,TH,S ,PROPS ,NPROPS ,.SQAT3,

1 F2, PDA, RATIOB, RATIOC, RATIO,TJN2)
STATEV( 1-s
STATEV( 2)-TH
STATEVC 3)-F2
STATEV 4 )-STATEV 4 )+DGAMPB
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* 8 * * *55*8888$ 8888$8w¢¢888888 ****8* ******* *****$ *$ *$¢8¢888888888888

C Comparison of the plastic strain rates before and after the time
C increment. To be used by the automatic integration scheme of ABAQUS.
C Note that the factor SQART3 is used to convert shear strain to
C tensile strain.
C88 *88 *88885888888888$ *8888888* *s *88*8$$85 888sss8*88 * s$888 * 888*8

DIFF-DIrE*DABS(F1 -F2)/SQART3
CENIAX-MI~i (CEMAX, DI FE)

C Check magnitude of plastic strain increment against a reference lovel.
C This allows the automatic timestep control in ABAQUS to limit the size
C of the plastic strain increment using the variable CEMAX.
0t88888* 88$$$858888 888888888$8888888885$8 88888888 *88588 *8585* * 8

PLSLMr-PROPS(1)*SQART3
IF (PLSLMr.GT.ZERO) THEN
PLSCHK- (IGAMPB/PLSLMI) *CEIML
CEMAX-EMX1 (CEMX, PLSCHK)
END IF
REIURN
END

SUBROUTINE IMPROP (AMU,AKAPPA,ALPHA.,RHD,C,71, PROPS,NPROPS)

C Determine the following constants for the material-:
C AMU ---- shear modulus Csuggested uuits: N/m2)
C AKAPPA - bulk modulus (suggested units: N/m2)
C ALPHA.-- thermal expansion coefficient (suggested units: 1/Deg,K)
C RHO mass density (suggested units: kg/n3).
C C ------ specific heat (suggested units: Joules/kg/Deg.K)
C In general, these properties are functions of temperature, but in
C the present case they are input directly, assuming no temperature
C dependence. Additional entries in PROPS could be used to define them
C as functions of temperature.

IMPLICIT REAL*8(A-H,O-Z)

DIMENS ION PROPS (NPROPS)

A -JPROPS(6)
AKAPPA-PROPS(7)
ALPHA-PROPS(8)
RHD-PROPS (9)
C-PROPS(10)

RTURN
END

0$88888888588888858588888855888 8588588888888888 888 $8888888888

08885**888588588888888888 85888888 *88 * 88885888888 * 888885888888885

SUBROUTINE SBETA (TAUB,PB,TH,S,BEIA)

C Subroutine SBETA determines the plastic dilatancy factor.
0' 88$* *$88888* 8888*88885 8558 88888888888888888888585885888888888

IMPLICIT REAL'8(A-H,O-Z)

08 88888888888888888588855888888888588855888888888$$8$$888BETA=O. O1+O

RETURN
END
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SUBROUTINE GAXYI" (TAUB, PB ,'II, S,PROPS,NPROPS , SQART3,
1 F,PIk,RATIOB,RATIOC,RATIOD,cDN2)

asss sss ss a aa ss is$s85 sa~ss ssss sss$$ sass sss a85ss$ s sss ses $$*

C Subroutine GAMDOT determines the equivalent plastic shear strain rate
C and its derivatives PID,PDB,PDC,PIM with respect to TAUB,PB,7H,and S,
C respectively. Note that the following derivative terms are returned:
C RATIOB - PDB/PDA
C RATIOC - PDC/PIY
C RATIOD - PJ1/PIs

IMPLICIT REAL*8(A-H,O-Z)
C*$**8s sssa5sa8tsssssssa85ssss ssssssas$ss sassastsass ss

CXRMtN/(DNSTS/PISIN60,CDS60,K(ROS2(3)-,KROS3(3),ZEROLZERO,LONE,
1 ONE,'VWD,HALF,ABIG,AAkLL,BCBIG,LOCSBR(2,3),THIRD, PRECIS, BLANK

DIMENSION PROPS(NPROPS)

C Material parameters defining the equivalent plastic shear strain rate
C PROPS(l)-A --- pre-exponential factor
C suggested units are: 1./sec
C PROPS(12)-Q/R --- activation energy divided by universal gas constant
C suggested units for Q are: kJ/mol
C suggested units for R are: 8.314D-3 kJ/mol/Deg.K
C PROPS(13)-1./AM -- 1./strain rate sensitivity
C PROPS(14)-PALPHA -- pressure sensitivity parameter
C suggested units are: 1/(N/m2)
C Note: PALPHA-2*(EM/DPB)/MJO , with
C MUO -- shear mdulus at zero pressure
C EMJ/DPB -- pressure dependency of shear modulus

AL - 3.250D0
OJN2-SQART3*PROPS(11)*DEXP(-PROPS(12)/iH)

F= )N2*(DSINH(TAUB*AL/(S*(ONE+PROPS(14)*PB))))**PROPS(13)

C Note that a tolerance was set on the minimnn value of TAUB allowed,
C to avoid calculational difficulties.

SP - S*(ONE+PROPS(14)*PB)
PDA-F*PROPS( 13) *DCDSH(TAUB*AL/SP) *AL/DSINH(TAUB*AL/SP)/SP
RATIOB-O.O
RATIOCPROPS(12)*s*DrANH(TAUB*AL/S)/(AL*PROPS(13)*TH**2)
RATIOD--TAUB/S

REIURN
END

SUBRWi'INE sDOr (TAUB,PB, 7H, S ,AMJ,CN2 ,PROPS ,NPROPS , SQART3 ,F,
1 H,RDOT,SA)

C This subroutine determinem the hardening rate H and the static
C zestoration rate RDOr.

IMPLICIT REAL*8(A-H,O-Z)

CICfON/aDNSTS/PI,SIN60,OS60,KCOS2(3),KCROS3(3),ZERO,LZERO,LONE,
I ONE,WO,HALF,ABIG,ASAALLBCBIG,LOCSHR(2,3) ,T1IRD,PRECIS,BLANK

DIMENS ION PROPS (NPROPS)
***s***as*ss*s** ss*s*ssaaesasasssssas*ssa** ss*sa***a**a*s**ss***201*
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C Material)parameters determining the rate of hardening:
C PROPS(15)-HO -- pre-multiplier in hardening rate equation
C suggested units: N/m2
C PROPS(16)-SB -- pre-nmltiplier for saturation value of S
C suggested units: N/m2
C PROPS(17)-AN -- exponent in eqn. for saturation value of S
C PROPS(18)-B --- pre-multiplier for rate of static restoration
C suggested units: N/m2
C PROPS(19)-SA -- annealed value of S.
C suggested units: N/m2
C PROPS(20)-P --- exponent of ((S/SA)-i.) in RIXTf
C The following constant was calculated in GAM[X=T.
C CON2 - A*DEXP( -Q/(R*TH) )
C Note that HO,SB,B, and SA should be from tensile test data because
C a conversion to pure shear data is done in this subroutine.

* $ * * * ** ** ***888818 888SS8888888888888888888* *8888S8 **88*8 * 88 8*

C First calculate H.

SS-(PROPS(16)/SQART3)*(F/CDN2)**PROPS(17)
IF (S.LE.SS) THEN
H-THIRD*PROPS(15)*(ONE-S/SS)**1.5DO
ELSE
H-ZERO
END IF

C Determine the annealed value of S. Although in general it is a
C function of temperature, in the present version it is input directly
C and considered constant.

SA-PROPS (19)/SQART3-

C Calculate RDOT.

SD-(S/SA)-ONE
IF (SD.GT.ZERO) THEN
RIT-AMJ8THIRD*PROPS(18)*CON2*SD**PROPS(20)
ELSE
RDOT-ZERO
END IF

REMURN
END
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APPENDIX D

ABAQUS input files
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*HEADIN
LOAD B(XJNDARY CONDITIONS - 20000 N
*NODE
1,0.0,0.0
2,0.00635,0.0
3,0.00635,O.009525
4,0.0,0.009525
*ELBOT, TYPE-CAX4H
1,1,2,3,4
*BOUNDARY
1,1,2
2,2
4,1

EQUATION
2
3,2,1.,4,2,-1.
*MATERIAL
*USER MATERIAL, (X)NSTANS-20
.01DO ,0.75D0 ,O.DO , 60.0D6 ,1073.14D0 ,32.0D9 ,1.59Dl ,16.6D-6
7.3D3 ,0.44D3,6.346D11,3.7569D4 ,5.1125D0 ,0.ODO ,3774.D6 ,125.1D6
.06869D0,O.ODO , 60.OD6,1.0DO
*DEPVAR
4
*AMPLIDE ,VALUE-A, TIME-V, NAE,'OPLAD
0., 0., 10., -20000, 20. , -20000, 30. , 0.
*STEP, NLGBEM,AMP-RAMP, INCm1500,CYCLE-6, SUEKAX
*VISWD,PTOL-.1 •.,CETL-1 .0E-5
0.0001,30.0,,.06
*CLOAD ,AMPLI7LDE-TOPLQAD
4,2,1.
*EL FILE,FREQ-1
2,1
2,1,1
*EL PRINT,FREQ-1000
2,1
2,1,1
*NODE PRINT,FREQ-1000
*PRINr,RESIDUAL=NOFREQ-100
*END STEP
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*HEAD ING
ALIMINLM GRADIENT SPECIMEN

NEUTRAL FILE GENEPATED ON: 26-MAR-86 09:38:09 PATRAN VERSION: 1.63
SUYMRY DATA:

** 52 NODES, 36 ELMENTS, 0 MATERIALS, 0 PHYSICAL PROPERTIES
*NODE, NSET-CFOOO0

1 0.0 0.0
4 0.01270 0.0
49 0.0 0.04041
52 0.00374 0.04041

*NOEN, NSET-LS IDE
1,49,4
*NGEN,NSET-RS IDE
4,52,4
*NGEN
1,4,1
5,8,1
9,12,1
13,16,1
17,20,1
21,24,1
25,28,1
29,32,1
33,36,1
37,40,1
41,44,1
45,48,1
49,52,1
,NSET,NSET-TOP
49,50,51,52
'ELEMEN, TYPE-CAX4H
1, 1, 2, 6, 5

*ELGEN
1,3,1,1,12,4,3
*BOUNDARY

1 1 2 .OOOE+00
2 2 .00OE+00
3 2 .OOOE+00
4 2 .OOOE+00
5 1 .OOOE+00
9 1 .OOOE+00

13 1 .OOOE+00
17 1 .OOOE+00
21 1 .OOOE+00
25 1 .OOOE+00
29 1 .OOOE+00
33 1 .OOOE+00
37 1 .O00E+00
41 1 .OOOE+00
45 1 .00E+O0
49 1 .OOOE+00

*EQATION
2
52,2,1.,49,2,-1.
2
51,2,1.,49,2,-1.
2
50,2,1. ,49,2,-1.

*MTERIAL
*USER MTERIAL, CONSTANTS-20
.01DO, 0.75D0 ,O.DO , 35.0D6 , 573.16D0 ,25.0D9 ,0.70D11 ,22.OD-6
2.753 ,1.00D3 ,1.906D7 ,2.1086D4 ,4.2831D0 .0.0D0 ,1115.D6 ,18.9D6
.07049DO,O.ODO , 35.0D6 ,1.ODO
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sDEPVAR
4
*PLOT

*DRAW
*STEP, ,NWECAMP-RAMP, INC-i ,CYCLE-6, SMAvIX
*VI SCr, PTYL1l .0, CETOL-1. .E- 4
0. 0000065,.0. 0000065,0.0000065
*BOQJI~kRY
TOP,2, -0.00000001
*NODE) PRINT
*PRINr,RES IIXAL-NO

*END STEP
*RESTART ,'%RITE, FREQ-300
*STEP, NLGECN, AMP-RAWPINC-300 ,CYCLE-6 ,SUBMAX
*VISCDPTOL-..5 C ETO L-1 .OE-4
0.001, 8.0,,.08

TOP,2, -0.0080
*EL FILE,FREQ-49

2 2 1 1
2 2 1 1
2 2 2 2

*NODE FILE,FREQ-49
2 1 1 1 1 2

*EL PRINTr,DEPVAR,FREjQ-49
2,1

*NODEJ PRINTr,FREQ-49
*PRINrES IIAL-NO

*5 PLUNTING SECTION
*PLOr, FREQ-49
*DI SPLACED
1,1.0
*cOM'IJJR

** VON MISES STRESS
9,10

5$ INTERNAL VARIABLE

*EN3D STEP
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